8,537 research outputs found
What determines the spreading of a wave packet?
The multifractal dimensions D2^mu and D2^psi of the energy spectrum and
eigenfunctions, resp., are shown to determine the asymptotic scaling of the
width of a spreading wave packet. For systems where the shape of the wave
packet is preserved the k-th moment increases as t^(k*beta) with
beta=D2^mu/D2^psi, while in general t^(k*beta) is an optimal lower bound.
Furthermore, we show that in d dimensions asymptotically in time the center of
any wave packet decreases spatially as a power law with exponent D_2^psi - d
and present numerical support for these results.Comment: Physical Review Letters to appear, 4 pages postscript with figure
Can quantum fractal fluctuations be observed in an atom-optics kicked rotor experiment?
We investigate the parametric fluctuations in the quantum survival
probability of an open version of the delta-kicked rotor model in the deep
quantum regime. Spectral arguments [Guarneri I and Terraneo M 2001 Phys. Rev. E
vol. 65 015203(R)] predict the existence of parametric fractal fluctuations
owing to the strong dynamical localisation of the eigenstates of the kicked
rotor. We discuss the possibility of observing such dynamically-induced
fractality in the quantum survival probability as a function of the kicking
period for the atom-optics realisation of the kicked rotor. The influence of
the atoms' initial momentum distribution is studied as well as the dependence
of the expected fractal dimension on finite-size effects of the experiment,
such as finite detection windows and short measurement times. Our results show
that clear signatures of fractality could be observed in experiments with cold
atoms subjected to periodically flashed optical lattices, which offer an
excellent control on interaction times and the initial atomic ensemble.Comment: 18 pp, 7 figs., 1 tabl
Engineering transport by concatenated maps
We present a generalized kick rotor model in which the phase of the kick can
vary from kick to kick. This additional freedom allows one to control the
transport in phase space. For a specific choice of kick-to-kick phases, we
predict novel forms of accelerator modes which are potentially of high
relevance for future experimental studies
Excitation of Small Quantum Systems by High-Frequency Fields
The excitation by a high frequency field of multi--level quantum systems with
a slowly varying density of states is investigated. A general approach to study
such systems is presented. The Floquet eigenstates are characterized on several
energy scales. On a small scale, sharp universal quasi--resonances are found,
whose shape is independent of the field parameters and the details of the
system. On a larger scale an effective tight--binding equation is constructed
for the amplitudes of these quasi--resonances. This equation is non--universal;
two classes of examples are discussed in detail.Comment: 4 pages, revtex, no figure
Multifractal fluctuations in the survival probability of an open quantum system
We predict a multifractal behaviour of transport in the deep quantum regime
for the opened kicked rotor model. Our analysis focuses on
intermediate and large scale correlations in the transport signal and
generalizes previously found parametric {\em mono}-fractal fluctuations in the
quantum survival probability on small scales.Comment: 8 pages, 3 figures, 2 tables. Physica A, accepted 200
- …