3 research outputs found

    Bulk Fermi surface and electronic properties of Cu0.07_{0.07}Bi2_{2}Se3_{3}

    Full text link
    The electronic properties of Cu0.07_{0.07}Bi2_{2}Se3_{3} have been investigated using Shubnikov-de Haas and optical reflectance measurements. Quantum oscillations reveal a bulk, three-dimensional Fermi surface with anisotropy kFc/kFab≈k^{c}_{F}/k^{ab}_{F}\approx 2 and a modest increase in free-carrier concentration and in scattering rate with respect to the undoped Bi2_{2}Se3_{3}, also confirmed by reflectivity data. The effective mass is almost identical to that of Bi2_{2}Se3_{3}. Optical conductivity reveals a strong enhancement of the bound impurity bands with Cu addition, suggesting that a significant number of Cu atoms enter the interstitial sites between Bi and Se layers or may even substitute for Bi. This conclusion is also supported by X-ray diffraction measurements, where a significant increase of microstrain was found in Cu0.07_{0.07}Bi2_{2}Se3_{3}, compared to Bi2_{2}Se3_{3}.Comment: Accepted to Phys. Rev B (R
    corecore