4,197 research outputs found

    The top-quark's running mass

    Full text link
    We discuss the direct determination of the running top-quark mass from measurements of the total cross section of hadronic top-quark pair-production. The theory predictions in the MSbar scheme are very stable under scale variations and show rapid apparent convergence of the perturbative expansion. These features are explained by studying the underlying parton dynamics.Comment: 6 pages, 2 figures; to appear in Proceedings of the 9th International Symposium on Radiative Corrections, RADCOR 2009, Ascona, Switzerland, October 200

    The OTIS Reference Manual

    Get PDF
    This document describes the port definitions, electrical specifications, modes of operation and programming sequences of the OTIS TDC. The chip is developed for the Outer Tracker of the LHCb experiment. OTIS1.0 is the first full-scale prototype of this 32 channel TDC and has been submitted in April 2002 in a standard 0.25µm CMOS process. Within the clock driven architecture of the chip a DLL provides the reference for the drift time measurement. The drift time data of every channel is stored in the pipeline memory until a trigger decision arrives. A control unit provides memory and trigger management and handles data transmission to the subsequent DAQ stage. The latest chip version is OTIS1.3

    OTIS: a radiation hard TDC for LHCb

    Get PDF

    Wafer test of the LHCb Outer Tracker TDC-Chip

    Get PDF
    The OTIS-TDC is the front end readout chip for the LHCb Outer Tracker. It is designed to measure drift times with a resolution better than 1 ns. As the chip will be directly mounted to its board, the test have to be performed on the wafer itself. As the testing period for 7 000 chips was only three weeks, many test routines have been implemented on a FPGA. Each chip is subjected to detailed probe testing to ensure the full functionality as well as a good performance. Overall 47 wafer have been tested. From the chips passing the test 2 000 have been used in the Outer Tracker front end electronic

    The LHCb Outer Tracker Front End Electronics

    Get PDF
    This note provides an overview of the front-end electronics used to readout the drift-times of the LHCb Outer Tracker straw tube chambers. The main functional components of the readout are the ASDBLR ASIC for amplification and signal digitization, the OTIS ASIC for the time measurement and for the L0 buffering, and the GOL ASIC to serialize the digital data for the optical data transmission. The L1 buffer board used to receive the data which is sent via the optical link is a common LHCb development and is not described here. This note supersedes an earlier document [1]

    Improved performance of the LHCb Outer Tracker in LHC Run 2

    Full text link
    The LHCb Outer Tracker is a gaseous detector covering an area of 5Ă—6m25\times 6 m^2 with 12 double layers of straw tubes. The performance of the detector is presented based on data of the LHC Run 2 running period from 2015 and 2016. Occupancies and operational experience for data collected in ppp p, pPb and PbPb collisions are described. An updated study of the ageing effects is presented showing no signs of gain deterioration or other radiation damage effects. In addition several improvements with respect to LHC Run 1 data taking are introduced. A novel real-time calibration of the time-alignment of the detector and the alignment of the single monolayers composing detector modules are presented, improving the drift-time and position resolution of the detector by 20\%. Finally, a potential use of the improved resolution for the timing of charged tracks is described, showing the possibility to identify low-momentum hadrons with their time-of-flight.Comment: 29 pages, 20 figures, minor changes to match the published versio
    • …
    corecore