4 research outputs found
Validation of Commercial SARS-CoV-2 Immunoassays in a Nigerian Population
Validated assays are essential for reliable serosurveys; however, most SARS-CoV-2 immunoassays have been validated using specimens from China, Europe, or U.S. populations. We evaluated the performance of five commercial SARS-CoV-2 immunoassays to inform their use in serosurveys in Nigeria. Four semiquantitative enzyme-linked immunosorbent assays (ELISAs) (Euroimmun anti-SARS-CoV-2 nucleocapsid protein [NCP] immunoglobulin G [IgG], Euroimmun spike SARS-CoV-2 IgG, Mologic Omega COVID-19 IgG, Bio-Rad Platelia SARS-CoV-2 Total Ab) and one chemiluminescent microparticle immunoassay (Abbott Architect SARS-CoV-2 IgG) were evaluated. We estimated the analytical performance characteristics using plasma from 100 SARS-CoV-2 PCR-positive patients from varied time points post-PCR confirmation and 100 prepandemic samples (50 HIV positive and 50 hepatitis B positive). The Bio-Rad assay failed the manufacturer-specified validation steps. The Euroimmun NCP, Euroimmun spike, and Mologic assays had sensitivities of 73.7%, 74.4%, and 76.9%, respectively, on samples taken 15 to 58 days after PCR confirmation and specificities of 97%, 100%, and 83.8%, respectively. The Abbott assay had 71.3% sensitivity and 100% specificity on the same panel. Parallel or serial algorithms combining two tests did not substantially improve the sensitivity or specificity. Our results showed lower sensitivity and, for one immunoassay, lower specificity compared to the manufacturers' results and other reported validations. Seroprevalence estimates using these assays might need to be interpreted with caution in Nigeria and similar settings. These findings highlight the importance of in-country validations of SARS-CoV-2 serological assays prior to use to ensure that accurate results are available for public health decision-making to control the COVID-19 pandemic in Africa. IMPORTANCE This study used positive and negative sample panels from Nigeria to test the performance of several commercially available SARS-CoV-2 serological assays. Using these prepandemic and SARS-CoV-2-positive samples, we found much lower levels of sensitivity in four commercially available assays than most assay manufacturer reports and independent evaluations. The use of these assays with suboptimal sensitivity and specificity in Nigeria or countries with population exposure to similar endemic pathogens could lead to a biased estimate of the seroprevalence, over- or underestimating the true disease prevalence, and limit efforts to stop the spread of SARS-CoV-2. It is important to conduct in-country validations of serological SARS-CoV-2 assays prior to their widespread use, especially in countries with limited representation in published assay validations
Cross-Reactivity of Two SARS-CoV-2 Serological Assays in a Setting Where Malaria Is Endemic
Background: Accurate SARS-CoV-2 serological assays are critical for COVID-19 serosurveillance. However, previous studies have indicated possible cross-reactivity of these assays, including in malaria-endemic areas.Methods: We tested 213 well-characterized pre-pandemic samples from Nigeria using two SARS-CoV-2 serological assays: Abbott Architect IgG and Euroimmun NCP IgG assay, both targeting SARS-CoV-2 nucleocapsid protein. To assess antibody binding strength, an avidity assay was performed on these samples and on plasma from SARS-CoV-2 PCR-positive persons.Results: Thirteen (6.1%) of 212 samples run on the Abbott assay and 38 (17.8%) of 213 run on the Euroimmun assay were positive. Anti-Plasmodium IgG levels were significantly higher among false-positives for both Abbott and Euroimmun; no association was found with active P. falciparum infection. An avidity assay using various concentratIons of urea wash in the Euroimmun assay reduced loosely-bound IgG: of 37 positive/borderline pre-pandemic samples, 46%, 86%, 89%, and 97% became negative using 2M, 4M, 5M, and 8M urea washes, respectively. The wash slightly reduced avidity of antibodies from SARS-CoV-2 patients within 28 days of PCR confirmation; thereafter avidity increased for all urea concentrations except 8M.Conclusions: This validation found moderate to substantial cross-reactivity on two SARS-CoV-2 serological assays using samples from a malaria-endemic setting. A simple urea wash appeared to alleviate issues of cross-reactivity
Validation of xMAP SARS-CoV-2 Multi-Antigen IgG assay in Nigeria
Objective: There is a need for reliable serological assays to determine accurate estimates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence. Most single target antigen assays have shown some limitations in Africa. To assess the performance of a multi-antigen assay, we evaluated a commercially available SARS-CoV-2 Multi-Antigen IgG assay for human coronavirus disease 2019 (COVID-19) in Nigeria. /
Methods: Validation of the xMAP SARS-CoV-2 Multi-Antigen IgG assay was carried out using well-characterized SARS-CoV-2 reverse transcription polymerase chain reactive positive (97) and pre-COVID-19 pandemic (86) plasma panels. Cross-reactivity was assessed using pre-COVID-19 pandemic plasma specimens (213) from the 2018 Nigeria HIV/AIDS Indicator and Impact Survey (NAIIS). /
Results: The overall sensitivity of the xMAP SARS-CoV-2 Multi-Antigen IgG assay was 75.3% [95% CI: 65.8%– 82.8%] and specificity was 99.0% [95% CI: 96.8%– 99.7%]. The sensitivity estimate increased to 83.3% [95% CI: 70.4%– 91.3%] for specimens >14 days post-confirmation of diagnosis. However, using the NAIIS pre-pandemic specimens, the false positivity rate was 1.4% (3/213). /
Conclusions: Our results showed overall lower sensitivity and a comparable specificity with the manufacturer’s validation. There appears to be less cross-reactivity with NAIIS pre-pandemic COVID-19 specimens using the xMAP SARS-CoV-2 Multi-Antigen IgG assay. In-country SARS-CoV-2 serology assay validation can help guide the best choice of assays in Africa
Comparison of one single-antigen assay and three multi-antigen SARS-CoV-2 IgG assays in Nigeria
Objectives: Determining an accurate estimate of SARS-CoV-2 seroprevalence has been challenging in African countries where malaria and other pathogens are endemic. We compared the performance of one single-antigen assay and three multi-antigen SARS-CoV-2 IgG assays in a Nigerian population endemic for malaria. Methods: De-identified plasma specimens from SARS-CoV-2 RT-PCR positive, dried blood spot (DBS) SARS-CoV-2 RT-PCR positive, and pre-pandemic negatives were used to evaluate the performance of the four SARS-CoV-2 assays (Tetracore, SARS2MBA, RightSign, xMAP). Results: Results showed higher sensitivity with the multi-antigen (81% (Tetracore), 96% (SARS2MBA), 85% (xMAP)) versus the single-antigen (RightSign (64%)) SARS-CoV-2 assay. The overall specificities were 98% (Tetracore), 100% (SARS2MBA and RightSign), and 99% (xMAP). When stratified based on <15 days to ≥15 days post-RT-PCR confirmation, the sensitivities increased from 75% to 88.2% for Tetracore; from 93% to 100% for the SARS2MBA; from 58% to 73% for RightSign; and from 83% to 88% for xMAP. With DBS, there was no positive increase after 15-28 days for the three assays (Tetracore, SARS2MBA, and xMAP). Conclusion: Multi-antigen assays performed well in Nigeria, even with samples with known malaria reactivity, and might provide more accurate measures of COVID-19 seroprevalence and vaccine efficacy