30 research outputs found
Intracellular domains of the NMDA receptor subtypes are determinants for long-term potentiation induction
NMDA receptors (NMDARs) are essential for modulating synaptic strength at central synapses. At hippocampal CA3-to-CA1 synapses of adult mice, different NMDAR subtypes with distinct functionality assemble from NR1 with NR2A and/or NR2B subunits. Here we investigated the role of these NMDA receptor subtypes in long-term potentiation (LTP) induction. Because of the higher NR2B contribution in the young hippocampus, LTP of extracellular field potentials could be enhanced by repeated tetanic stimulation in young but not in adult mice. Similarly, NR2B-specific antagonists reduced LTP in young but only marginally in adult wild-type mice, further demonstrating that in mature CA3-to-CA1 connections LTP induction results primarily from NR2A-type signaling. This finding is also supported by gene-targeted mutant mice expressing C-terminally truncated NR2A subunits, which participate in synaptic NMDAR channel formation and Ca2+ signaling, as indicated by immunopurified synaptic receptors, postembedding immunogold labeling, and spinous Ca2+ transients in the presence of NR2B blockers. These blockers abolished LTP in the mutant at all ages, revealing that, without the intracellular C-terminal domain, NR2A-type receptors are deficient in LTP signaling. Without NR2B blockade, CA3-to-CA1 LTP was more strongly reduced in adult than young mutant mice but could be restored to wild-type levels by repeated tetanic stimulation. Thus, besides NMDA receptor-mediated Ca2+ influx, subtype-specific signaling is critical for LTP induction, with the intracellular C-terminal domain of the NR2 subunits directing signaling pathways with an age-dependent preference
NEURONAL ENRICHED ENDOSOMAL PROTEIN OF 21 kDa COLOCALIZES WITH GLUTAMATE RECEPTOR SUBUNIT GLUR2/3 AT THE POSTSYNAPTIC MEMBRANE
Functional evidence suggests that neuronal enriched endosomal protein of 21 kDa (NEEP21) takes part in facilitating transport of AMPA receptors (AMPAR) in the synapse. To explore the anatomical basis for a role in this synaptic trafficking, we investigated the ultrastructural localization of NEEP21 in rodent brain. Using immunogold electron microscopy, we show that NEEP21 is colocalized with the AMPAR subunits GIuR2/3 in postsynaptic spines. Quantitative analysis of gold particle distribution along an axis perpendicular to the postsynaptic specialization indicated that NEEP21 occurs in the postsynaptic membrane but also in the interior of the spines. NEEP21 positive endosomes/multivesicular bodies were found throughout cell bodies and dendrites. In light microscopical preparations, the NEEP21 antibody produced a labeling pattern in the neocortex, hippocampus and cerebellum that mimicked that of GluR2/3 and not that of GluR1 or 4. Our findings are consistent with a role for NEEP21 in facilitating vesicular transport of GluR2 between intracellular compartments and the postsynaptic plasma membrane. (C) 2009 Published by Elsevier Ltd on behalf of IBRO
Intracellular domains of the NMDA receptor subtypes are determinants for long-term potentiation induction
NMDA receptors (NMDARs) are essential for modulating synaptic strength at central synapses. At hippocampal CA3-to-CA1 synapses of adult mice, different NMDAR subtypes with distinct functionality assemble from NR1 with NR2A and/or NR2B subunits. Here we investigated the role of these NMDA receptor subtypes in long-term potentiation (LTP) induction. Because of the higher NR2B contribution in the young hippocampus, LTP of extracellular field potentials could be enhanced by repeated tetanic stimulation in young but not in adult mice. Similarly, NR2B-specific antagonists reduced LTP in young but only marginally in adult wild-type mice, further demonstrating that in mature CA3-to-CA1 connections LTP induction results primarily from NR2A-type signaling. This finding is also supported by gene-targeted mutant mice expressing C-terminally truncated NR2A subunits, which participate in synaptic NMDAR channel formation and Ca2+ signaling, as indicated by immunopurified synaptic receptors, postembedding immunogold labeling, and spinous Ca2+ transients in the presence of NR2B blockers. These blockers abolished LTP in the mutant at all ages, revealing that, without the intracellular C-terminal domain, NR2A-type receptors are deficient in LTP signaling. Without NR2B blockade, CA3-to-CA1 LTP was more strongly reduced in adult than young mutant mice but could be restored to wild-type levels by repeated tetanic stimulation. Thus, besides NMDA receptor-mediated Ca2+ influx, subtype-specific signaling is critical for LTP induction, with the intracellular C-terminal domain of the NR2 subunits directing signaling pathways with an age-dependent preference