2 research outputs found

    Selection of appropriate analytical tools to determine the potency and bioactivity of antibiotics and antibiotic resistance

    Get PDF
    Antibiotics are the chemotherapeutic agents that kill or inhibit the pathogenic microorganisms. Resistance of microorganism to antibiotics is a growing problem around the world due to indiscriminate and irrational use of antibiotics. In order to overcome the resistance problem and to safely use antibiotics, the correct measurement of potency and bioactivity of antibiotics is essential. Microbiological assay and high performance liquid chromatography (HPLC) method are used to quantify the potency of antibiotics. HPLC method is commonly used for the quantification of potency of antibiotics, but unable to determine the bioactivity; whereas microbiological assay estimates both potency and bioactivity of antibiotics. Additionally, bioassay is used to estimate the effective dose against antibiotic resistant microbes. Simultaneously, microbiological assay addresses the several parameters such as minimal inhibitory concentration (MIC), minimum bactericidal concentration (MBC), mutation prevention concentration (MPC) and critical concentration (Ccr) which are used to describe the potency in a more informative way. Microbiological assay is a simple, sensitive, precise and cost effective method which gives reproducible results similar to HPLC. However, the HPLC cannot be a complete substitute for microbiological assay and both methods have their own significance to obtain more realistic and precise results

    Development and validation of microbial bioassay for quantification of Levofloxacin in pharmaceutical preparations

    Get PDF
    The aim of this study was to develop and validate a simple, sensitive, precise and cost-effective one-level agar diffusion (5+1) bioassay for estimation of potency and bioactivity of Levofloxacin in pharmaceutical preparation which has not yet been reported in any pharmacopoeia. Among 16 microbial strains, Bacillus pumilus ATCC-14884 was selected as the most significant strain against Levofloxacin. Bioassay was optimized by investigating several factors such as buffer pH, inoculums concentration and reference standard concentration. Identification of Levofloxacin in commercial sample Levoflox tablet was done by FTIR spectroscopy. Mean potency recovery value for Levofloxacin in Levoflox tablet was estimated as 100.90%. A validated bioassay method showed linearity (r2=0.988), precision (Interday RSD=1.05%, between analyst RSD=1.02%) and accuracy (101.23%, RSD=0.72%). Bioassay was correlated with HPLC using same sample and estimated potencies were 100.90% and 99.37%, respectively. Results show that bioassay is a suitable method for estimation of potency and bioactivity of Levofloxacin pharmaceutical preparations. Keywords: Levofloxacin, Antibiotic resistance, Microbiological bioassay, HPLC, Pharmacopoei
    corecore