120 research outputs found

    Clinical Utility of the Adapted Biopsychosocial Model: An Initial Validation Through Peer Review

    Get PDF
    Background: The World Health Organization has called on health care providers to adopt a biopsychosocial approach to improve health and well-being and reduce disability. While a variety of holistic models exist in occupational therapy, none are explicitly biopsychosocial and use language consistent with both the World Health Organization’s International Classification of Functioning, Disability and Health and the Occupational Therapy Practice Framework. Following the recent introduction of the Adapted Biopsychosocial Model (A-BPSM), this study served as an initial step toward validation of this model for use in occupational therapy. Method: A qualitative descriptive design was implemented with a maximum variation purposive sample of 30 participants, including occupational therapy students, clinicians, and educators. The participants were interviewed regarding their perceptions of the utility of the A-BPSM. A thematic analysis approach was used. Results: The participant data supported three major themes relating to the participants’ perceptions of the A-BPSM: clarity, utility, and anticipated competence for application. Conclusion: The findings support an initial step toward validation of the model and serve to offer occupational therapists an adapted biopsychosocial model of care. Recommendations include further evaluation of this model in comparison with existing models, as well as the application of the model to other disciplines

    Prospective randomized study comparing the Teleflex Medical SaphLITE Retractor to the Ethicon CardioVations Clearglide Endoscopic System

    Get PDF
    BACKGROUND: Several minimally invasive saphenous vein harvesting techniques have been developed to reduce morbidities associated with coronary artery bypass grafting. This prospective, randomized study was designed to compare two commonly used minimally invasive saphenous vein harvesting techniques, the SaphLITE Retractor System (Teleflex Medical) and the Clearglide Endoscopic Vessel Harvesting System (Ethicon CardioVations, Inc.). METHODS: Between January 2003 and March 2004, a total of 200 patients scheduled for primary, nonemergent coronary artery bypass grafting, with or without concomitant procedures were randomized into two groups: SaphLITE (n = 100) and Clearglide (n = 100). Pre-, intra- and postoperative data was collected and subjected to statistical analysis. Randomization provided homogenous groups with respect to preoperative risk factors. RESULTS: Harvest location for the SaphLITE group was thigh (n = 40), lower leg (n = 5) and both lower leg and thigh (n = 55). The location of harvest for the Clearglide group was thigh (n = 3), lower leg (n = 16) and both lower leg and thigh (n = 81). The mean incision length was 3.6 cm (range, 2–6) in the SaphLITE group versus 2.1 cm (range, 1–4) in the Clearglide group (p < 0.05). The total incision length was 12.9 cm versus 8.9 (p < 0.05) in the SaphLITE and Clearglide groups. Conversion to the open technique occurred in 5 SaphLITE patients and 7 Clearglide patients. Intraoperative leg exploration for bleeding occurred in two of the Clearglide patients and none of the SaphLITE patients. Post-operative complications specifically related to minimally invasive harvesting technique, including a two-week post-discharge visit, were not statistically different between the groups. CONCLUSION: The saphenous vein can be safely harvested utilizing the SaphLITE and Clearglide systems. While the Clearglide system allows for fewer incisions (number and length) and less harvest time, these benefits may be outweighed by the increased cost of the Clearglide system compared to the SaphLITE retractor

    Endoscopic Saphenous harvesting with an Open CO2 System (ESOS) trial for coronary artery bypass grafting surgery: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In coronary artery bypass grafting surgery, arterial conduits are preferred because of more favourable long-term patency and outcome. Anyway <it>the greater saphenous vein </it>continues to be the most commonly used bypass conduit. <it>Minimally invasive endoscopic saphenous vein harvesting </it>is increasingly being investigated in order to reduce the morbidity associated with conventional open vein harvesting, includes postoperative leg wound complications, pain and patient satisfaction. However, to date the short and the long-term benefits of the endoscopic technique remain controversial. This study provides an interesting opportunity to address this gap in the literature.</p> <p>Methods/Design</p> <p><b>Endoscopic Saphenous harvesting with an Open CO<sub>2 </sub>System </b>trial includes two parallel vein harvesting arms in coronary artery bypass grafting surgery. It is an interventional, single centre, prospective, randomized, safety/efficacy, cost/effectiveness study, in adult patients with elective planned and first isolated coronary artery disease. A simple size of 100 patients for each arm will be required to achieve 80% statistical power, with a significant level of 0.05, for detecting most of the formulated hypotheses. A six-weeks leg wound complications rate was assumed to be 20% in the conventional arm and less of 4% in the endoscopic arm. Previously quoted studies suggest a first-year vein-graft failure rate of about 20% with an annual occlusion rate of 1% to 2% in the first six years, with practically no difference between the endoscopic and conventional approaches. Similarly, the results on event-free survival rates for the two arms have barely a 2-3% gap. Assuming a 10% drop-out rate and a 5% cross-over rate, the goal is to enrol 230 patients from a single Italian cardiac surgery centre.</p> <p>Discussion</p> <p>The goal of this prospective randomized trial is to compare and to test improvement in wound healing, quality of life, safety/efficacy, cost-effectiveness, short and long-term outcomes and vein-graft patency after endoscopic open CO<sub>2 </sub>harvesting system versus conventional vein harvesting.</p> <p>The expected results are of high clinical relevance and will show the safety/efficacy or non-inferiority of one treatment approach in terms of vein harvesting for coronary artery bypass grafting surgery.</p> <p>Trial registration</p> <p>www.clinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01121341">NCT01121341</a>.</p

    Interaction of HP1 and Brg1/Brm with the Globular Domain of Histone H3 Is Required for HP1-Mediated Repression

    Get PDF
    The heterochromatin-enriched HP1 proteins play a critical role in regulation of transcription. These proteins contain two related domains known as the chromo- and the chromoshadow-domain. The chromo-domain binds histone H3 tails methylated on lysine 9. However, in vivo and in vitro experiments have shown that the affinity of HP1 proteins to native methylated chromatin is relatively poor and that the opening of chromatin occurring during DNA replication facilitates their binding to nucleosomes. These observations prompted us to investigate whether HP1 proteins have additional histone binding activities, envisioning also affinity for regions potentially occluded by the nucleosome structure. We find that the chromoshadow-domain interacts with histone H3 in a region located partially inside the nucleosomal barrel at the entry/exit point of the nucleosome. Interestingly, this region is also contacted by the catalytic subunits of the human SWI/SNF complex. In vitro, efficient SWI/SNF remodeling requires this contact and is inhibited in the presence of HP1 proteins. The antagonism between SWI/SNF and HP1 proteins is also observed in vivo on a series of interferon-regulated genes. Finally, we show that SWI/SNF activity favors loading of HP1 proteins to chromatin both in vivo and in vitro. Altogether, our data suggest that HP1 chromoshadow-domains can benefit from the opening of nucleosomal structures to bind chromatin and that HP1 proteins use this property to detect and arrest unwanted chromatin remodeling

    Apical Transport of Influenza A Virus Ribonucleoprotein Requires Rab11-positive Recycling Endosome

    Get PDF
    Influenza A virus RNA genome exists as eight-segmented ribonucleoprotein complexes containing viral RNA polymerase and nucleoprotein (vRNPs). Packaging of vRNPs and virus budding take place at the apical plasma membrane (APM). However, little is known about the molecular mechanisms of apical transport of newly synthesized vRNP. Transfection of fluorescent-labeled antibody and subsequent live cell imaging revealed that punctate vRNP signals moved along microtubules rapidly but intermittently in both directions, suggestive of vesicle trafficking. Using a series of Rab family protein, we demonstrated that progeny vRNP localized to recycling endosome (RE) in an active/GTP-bound Rab11-dependent manner. The vRNP interacted with Rab11 through viral RNA polymerase. The localization of vRNP to RE and subsequent accumulation to the APM were impaired by overexpression of Rab binding domains (RBD) of Rab11 family interacting proteins (Rab11-FIPs). Similarly, no APM accumulation was observed by overexpression of class II Rab11-FIP mutants lacking RBD. These results suggest that the progeny vRNP makes use of Rab11-dependent RE machinery for APM trafficking

    Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells

    Get PDF
    Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies

    Rab11-FIP1C and Rab14 Direct Plasma Membrane Sorting and Particle Incorporation of the HIV-1 Envelope Glycoprotein Complex

    Get PDF
    The incorporation of the envelope glycoprotein complex (Env) onto the developing particle is a crucial step in the HIV-1 lifecycle. The long cytoplasmic tail (CT) of Env is required for the incorporation of Env onto HIV particles in T cells and macrophages. Here we identify the Rab11a-FIP1C/RCP protein as an essential cofactor for HIV-1 Env incorporation onto particles in relevant human cells. Depletion of FIP1C reduced Env incorporation in a cytoplasmic tail-dependent manner, and was rescued by replenishment of FIP1C. FIP1C was redistributed out of the endosomal recycling complex to the plasma membrane by wild type Env protein but not by CT-truncated Env. Rab14 was required for HIV-1 Env incorporation, and FIP1C mutants incapable of binding Rab14 failed to rescue Env incorporation. Expression of FIP1C and Rab14 led to an enhancement of Env incorporation, indicating that these trafficking factors are normally limiting for CT-dependent Env incorporation onto particles. These findings support a model for HIV-1 Env incorporation in which specific targeting to the particle assembly microdomain on the plasma membrane is mediated by FIP1C and Rab14. © 2013 Qi et al.Link_to_subscribed_fulltex
    corecore