3 research outputs found

    The Influence of Electro-Mechanical Effects on Resonant Electron Tunneling Through Small Carbon Nano-Peapods

    Full text link
    The influence of a fullerene molecule trapped inside a single-wall carbon nanotube on resonant electron transport at low temperatures and strong polaronic coupling is theoretically discussed. Strong peak to peak fluctuations and anomalous temperature behavior of conductance amplitudes are predicted and investigated. The influence of the chiral properties of carbon nanotubes on transport is also studied.Comment: 17 pages, 3 figures. Replaced with published version. Important changes. Open access: http://stacks.iop.org/1367-2630/10/04304

    High-temperature excess current and quantum suppression of electronic backscattering in a 1-D system

    Full text link
    We consider the electronic current through a one-dimensional conductor in the ballistic transport regime and show that the quantum oscillations of a weakly pinned single scattering target results in a temperature- and bias-voltage independent excess current at large bias voltages. This is a genuine effect on transport that derives from an exponential reduction of electronic backscattering in the elastic channel due to quantum delocalization of the scatterer and from suppression of low-energy electron backscattering in the inelastic channels caused by the Pauli exclusion principle. We show that both the mass of the target and the frequency of its quantum vibrations can be measured by studying the differential conductance and the excess current. We apply our analysis to the particular case of a weakly pinned C60 molecule encapsulated by a single-wall carbon nanotube and find that the discussed phenomena are experimentally observable.Comment: 4 pages, 4 figure

    Coupling between Electronic and Vibrational Excitations in Carbon Nanotubes Filled with C-60 Fullerenes

    No full text
    cited By 4International audienceWe investigate the low-temperature electron transport through C 60 peapods, which are carbon nanotubes encapsulating C60 fullerenes. We find that the temperature dependence of the Coulomb blockade oscillations in peapod quantum dots deviates from conventional Breit-Wigner behavior, showing signatures of the Franck-Condon blockade of conductance. This indicates the presence of a coupling between electronic states and vibrational excitations. Unlike for suspended empty nanotubes, these are not intrinsic vibrational modes of the tube but mechanical vibrations of the encapsulated fullerenes that affect the electronic transport. Fullerene peapods thus emerge as a new class of nanoelectromechanical systems
    corecore