3 research outputs found
The Influence of Electro-Mechanical Effects on Resonant Electron Tunneling Through Small Carbon Nano-Peapods
The influence of a fullerene molecule trapped inside a single-wall carbon
nanotube on resonant electron transport at low temperatures and strong
polaronic coupling is theoretically discussed. Strong peak to peak fluctuations
and anomalous temperature behavior of conductance amplitudes are predicted and
investigated. The influence of the chiral properties of carbon nanotubes on
transport is also studied.Comment: 17 pages, 3 figures. Replaced with published version. Important
changes. Open access: http://stacks.iop.org/1367-2630/10/04304
High-temperature excess current and quantum suppression of electronic backscattering in a 1-D system
We consider the electronic current through a one-dimensional conductor in the
ballistic transport regime and show that the quantum oscillations of a weakly
pinned single scattering target results in a temperature- and bias-voltage
independent excess current at large bias voltages. This is a genuine effect on
transport that derives from an exponential reduction of electronic
backscattering in the elastic channel due to quantum delocalization of the
scatterer and from suppression of low-energy electron backscattering in the
inelastic channels caused by the Pauli exclusion principle. We show that both
the mass of the target and the frequency of its quantum vibrations can be
measured by studying the differential conductance and the excess current. We
apply our analysis to the particular case of a weakly pinned C60 molecule
encapsulated by a single-wall carbon nanotube and find that the discussed
phenomena are experimentally observable.Comment: 4 pages, 4 figure
Coupling between Electronic and Vibrational Excitations in Carbon Nanotubes Filled with C-60 Fullerenes
cited By 4International audienceWe investigate the low-temperature electron transport through C 60 peapods, which are carbon nanotubes encapsulating C60 fullerenes. We find that the temperature dependence of the Coulomb blockade oscillations in peapod quantum dots deviates from conventional Breit-Wigner behavior, showing signatures of the Franck-Condon blockade of conductance. This indicates the presence of a coupling between electronic states and vibrational excitations. Unlike for suspended empty nanotubes, these are not intrinsic vibrational modes of the tube but mechanical vibrations of the encapsulated fullerenes that affect the electronic transport. Fullerene peapods thus emerge as a new class of nanoelectromechanical systems