1,798 research outputs found
Direct perturbation theory on the shift of Electron Spin Resonance
We formulate a direct and systematic perturbation theory on the shift of the
main paramagnetic peak in Electron Spin Resonance, and derive a general
expression up to second order. It is applied to one-dimensional XXZ and
transverse Ising models in the high field limit, to obtain explicit results
including the polarization dependence for arbitrary temperature.Comment: 5 pages (no figures) in REVTE
Computing the Complete Gravitational Wavetrain from Relativistic Binary Inspiral
We present a new method for generating the nonlinear gravitational wavetrain
from the late inspiral (pre-coalescence) phase of a binary neutron star system
by means of a numerical evolution calculation in full general relativity. In a
prototype calculation, we produce 214 wave cycles from corotating polytropes,
representing the final part of the inspiral phase prior to reaching the ISCO.
Our method is based on the inequality that the orbital decay timescale due to
gravitational radiation is much longer than an orbital period and the
approximation that gravitational radiation has little effect on the structure
of the stars. We employ quasi-equilibrium sequences of binaries in circular
orbit for the matter source in our field evolution code. We compute the
gravity-wave energy flux, and, from this, the inspiral rate, at a discrete set
of binary separations. From these data, we construct the gravitational waveform
as a continuous wavetrain. Finally, we discuss the limitations of our current
calculation, planned improvements, and potential applications of our method to
other inspiral scenarios.Comment: 4 pages, 4 figure
Western Zika Virus in Human Fetal Neural Progenitors Persists Long Term with Partial Cytopathic and Limited Immunogenic Effects
SummaryThe recent Zika virus (ZIKV) outbreak in the Western hemisphere is associated with severe pathology in newborns, including microcephaly and brain damage. The mechanisms underlying these outcomes are under intense investigation. Here, we show that a 2015 ZIKV isolate replicates in multiple cell types, including primary human fetal neural progenitors (hNPs). In immortalized cells, ZIKV is cytopathic and grossly rearranges endoplasmic reticulum membranes similar to other flaviviruses. In hNPs, ZIKV infection has a partial cytopathic phase characterized by cell rounding, pyknosis, and activation of caspase 3. Despite notable cell death, ZIKV did not activate a cytokine response in hNPs. This lack of cell intrinsic immunity to ZIKV is consistent with our observation that virus replication persists in hNPs for at least 28 days. These findings, supported by published fetal neuropathology, establish a proof-of-concept that neural progenitors in the developing human fetus can be direct targets of detrimental ZIKV-induced pathology
Influence of Coulomb and Phonon Interaction on the Exciton Formation Dynamics in Semiconductor Heterostructures
A microscopic theory is developed to analyze the dynamics of exciton
formation out of incoherent carriers in semiconductor heterostructures. The
carrier Coulomb and phonon interaction is included consistently. A cluster
expansion method is used to systematically truncate the hierarchy problem. By
including all correlations up to the four-point (i.e. two-particle) level, the
fundamental fermionic substructure of excitons is fully included. The analysis
shows that the exciton formation is an intricate process where Coulomb
correlations rapidly build up on a picosecond time scale while phonon dynamics
leads to true exciton formation on a slow nanosecond time scale.Comment: 18 pages, 7 figure
Revised Relativistic Hydrodynamical Model for Neutron-Star Binaries
We report on numerical results from a revised hydrodynamic simulation of
binary neutron-star orbits near merger. We find that the correction recently
identified by Flanagan significantly reduces but does not eliminate the
neutron-star compression effect. Although results of the revised simulations
show that the compression is reduced for a given total orbital angular
momentum, the inner most stable circular orbit moves to closer separation
distances. At these closer orbits significant compression and even collapse is
still possible prior to merger for a sufficiently soft EOS. The reduced
compression in the corrected simulation is consistent with other recent studies
of rigid irrotational binaries in quasiequilibrium in which the compression
effect is observed to be small. Another significant effect of this correction
is that the derived binary orbital frequencies are now in closer agreement with
post-Newtonian expectations.Comment: Submitted to Phys. Rev.
Why holes are not like electrons. II. The role of the electron-ion interaction
In recent work, we discussed the difference between electrons and holes in
energy band in solids from a many-particle point of view, originating in the
electron-electron interaction, and argued that it has fundamental consequences
for superconductivity. Here we discuss the fact that there is also a
fundamental difference between electrons and holes already at the single
particle level, arising from the electron-ion interaction. The difference
between electrons and holes due to this effect parallels the difference due to
electron-electron interactions: {\it holes are more dressed than electrons}. We
propose that superconductivity originates in 'undressing' of carriers from
electron-electron and electron-ion interactions, and that both aspects
of undressing have observable consequences.Comment: Continuation of Phys.Rev.B65, 184502 (2002) = cond-mat/0109385 (2001
Multi-wavelength analysis of 18um-selected galaxies in the AKARI/IRC monitor field towards the North Ecliptic Pole
We present an initial analysis of AKARI 18um-selected galaxies using all 9
photometric bands at 2-24um available in the InfraRed Camera (IRC), in order to
demonstrate new capabilities of AKARI cosmological surveys. We detected 72
sources at 18um in an area of 50.2 arcmin^2 in the AKARI/IRC monitor field
towards the North Ecliptic Pole (NEP). From this sample, 25 galaxies with
probable redshifts z>~ 0.5 are selected with a single colour cut (N2-N3>0.1)
for a detailed SED analysis with ground-based BVRi'z'JK data. Using an SED
radiative transfer model of starbursts covering the wavelength range UV --
submm, we derive photometric redshifts from the optical-MIR SEDs of
18um-selected galaxies. From the best-fit SED models, we show that the IRC
all-band photometry is capable of tracing the steep rise in flux at the blue
side of the PAH 6.2um emission feature. This indicates that the IRC all-band
photometry is useful to constrain the redshift of infrared galaxies,
specifically for dusty galaxies with a less prominent 4000A break. Also, we
find that the flux dip between the PAH 7.7 and 11.2um emission feature is
recognizable in the observed SEDs of galaxies at z~1. By using such a colour
anomaly due to the PAH and silicate absorption features, unique samples of
ULIRGs at z~1, `silicate-break' galaxies, can be constructed from large
cosmological surveys of AKARI towards the NEP, i.e. the NEP-Deep and NEP-Wide
survey. This pilot study suggests the possibility of detecting many interesting
galaxy properties in the NEP-Deep and Wide surveys, such as a systematic
difference in SEDs between high- and low-z ULIRGs, and a large variation of the
PAH inter-band strength ratio in galaxies at high redshifts. [abridged]Comment: Accepted for publication in PASJ, AKARI special issu
The Infrared Camera (IRC) for AKARI - Design and Imaging Performance
The Infrared Camera (IRC) is one of two focal-plane instruments on the AKARI
satellite. It is designed for wide-field deep imaging and low-resolution
spectroscopy in the near- to mid-infrared (1.8--26.5um) in the pointed
observation mode of AKARI. IRC is also operated in the survey mode to make an
all-sky survey at 9 and 18um. It comprises three channels. The NIR channel
(1.8--5.5um) employs a 512 x 412 InSb array, whereas both the MIR-S
(4.6--13.4um) and MIR-L (12.6--26.5um) channels use 256 x 256 Si:As impurity
band conduction arrays. Each of the three channels has a field-of-view of about
10' x 10' and are operated simultaneously. The NIR and MIR-S share the same
field-of-view by virtue of a beam splitter. The MIR-L observes the sky about
$25' away from the NIR/MIR-S field-of-view. IRC gives us deep insights into the
formation and evolution of galaxies, the evolution of planetary disks, the
process of star-formation, the properties of interstellar matter under various
physical conditions, and the nature and evolution of solar system objects. The
in-flight performance of IRC has been confirmed to be in agreement with the
pre-flight expectation. This paper summarizes the design and the in-flight
operation and imaging performance of IRC.Comment: Publications of the Astronomical Society of Japan, in pres
Triple sign reversal of Hall effect in HgBa_{2}CaCu_{2}O_{6} thin films after heavy-ion irradiations
Triple sign reversal in the mixed-state Hall effect has been observed for the
first time in ion-irradiated HgBa_{2}CaCu_{2}O_{6} thin films. The negative dip
at the third sign reversal is more pronounced for higher fields, which is
opposite to the case of the first sign reversal near T_c in most high-T_c
superconductors. These observations can be explained by a recent prediction in
which the third sign reversal is attributed to the energy derivative of the
density of states and to a temperature-dependent function related to the
superconducting energy gap. These contributions prominently appear in cases
where the mean free path is significantly decreased, such as our case of
ion-irradiated thin films.Comment: 4 pages, 3 eps figures, submitted Phys. Rev. Let
Renormalized Bosonic Interaction of Excitons
An effective bosonic Hamiltonian of excitons with ``spin'' degrees of
freedom in two dimension is obtained through a projection procedure, starting
from a conventional electron-hole Hamiltonian . We first
demonstrate that a straightforward transformation of into a
Hamiltonian of bosonic excitons does not give the two-body interaction between
an ``up-spin'' exciton and a ``down-spin'' exciton, which are created by the
left- and right-circularly polarized light beams, respectively. We then show
that this interaction is generated through a projection procedure onto the
subspace spanned by excitons, as a renormalization effect coming from
higher exciton states. The projection also renormalizes the interaction between
excitons with the same spins by a large amount. These renormalization
effects are crucial for the polarization dependence of the optical responses
from semiconductors. The present theory gives the microscopic foundation of the
phenomenology that was successfully applied to the analysis of four-wave mixing
experiments in GaAs quantum wells strongly coupled to the radiation field in a
high-Q micro cavity.Comment: 2 figure
- …