583 research outputs found
Absorption Line Survey of H3+ toward the Galactic Center Sources III. Extent of the Warm and Diffuse Clouds
We present follow-up observations to those of Geballe & Oka (2010), who found
high column densities of H3+ ~100 pc off of the Galactic center (GC) on the
lines of sight to 2MASS J17432173-2951430 (J1743) and 2MASS J17470898-2829561
(J1747). The wavelength coverages on these sightlines have been extended in
order to observe two key transitions of H3+, R(3,3)l and R(2,2)l, that
constrain the temperatures and densities of the environments. The profiles of
the H3+ R(3,3)l line, which is due only to gas in the GC, closely matches the
differences between the H3+ R(1,1)l and CO line profiles, just as it does for
previously studied sightlines in the GC. Absorption in the R(2,2)l line of H3+
is present in J1747 at velocities between -60 and +100 km/s. This is the second
clear detection of this line in the interstellar medium after GCIRS 3 in the
Central Cluster. The temperature of the absorbing gas in this velocity range is
350 K, significantly warmer than in the diffuse clouds in other parts of the
Central Molecular Zone. This indicates that the absorbing gas is local to Sgr B
molecular cloud complex. The warm and diffuse gas revealed by Oka et al. (2005)
apparently extends to ~100 pc, but there is a hint that its temperature is
somewhat lower in the line of sight to J1743 than elsewhere in the GC. The
observation of H3+ toward J1747 is compared with the recent Herschel
observation of H2O+ toward Sgr B2 and their chemical relationship and
remarkably similar velocity profiles are discussed.Comment: 6 pages, 3 figures, 2 tables, Accepted for publication in
Publications of the Astronomical Society of Japa
The Interstellar Medium of IRAS 08572+3915 NW: H3+ and Warm High Velocity CO
We confirm the first detection of the molecular ion H3+ in an extragalactic
object, the highly obscured ultraluminous galaxy IRAS 08572+3915 NW. We also
have detected absorption lines of the fundamental band of CO in this galaxy.
The CO absorption consists of a cold component close to the systemic velocity
and warm, highly blueshifted and redshifted components. The warm blueshifted
component is remarkably strong and broad and extends at least to -350 km/s.
Some analogies can be drawn between the H3+ and cold CO in IRAS08572+3915 NW
and the same species seen toward the Galactic center. The profiles of the warm
CO components are not those expected from a dusty torus of the type thought to
obscure active galactic nuclei. They are probably formed close to the dust
continuum surface near the buried and active nucleus and are probably
associated with an unusual and energetic event there.Comment: 21 pages, 4 postscript figures, accepted by Ap
Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy
Observationally, supernovae (SNe) are divided into subclasses pertaining to
their distinct characteristics. This diversity reflects the diversity in the
progenitor stars. It is not entirely clear how different evolutionary paths
leading massive stars to become a SN are governed by fundamental parameters
such as progenitor initial mass and metallicity. This paper places constraints
on progenitor initial mass and metallicity in distinct core-collapse SN
subclasses, through a study of the parent stellar populations at the explosion
sites. Integral field spectroscopy (IFS) of 83 nearby SN explosion sites with a
median distance of 18 Mpc has been collected and analysed, enabling detection
and spectral extraction of the parent stellar population of SN progenitors.
From the parent stellar population spectrum, the initial mass and metallicity
of the coeval progenitor are derived by means of comparison to simple stellar
population models and strong-line methods. Additionally, near-infrared IFS was
employed to characterise the star formation history at the explosion sites. No
significant metallicity differences are observed among distinct SN types. The
typical progenitor mass is found to be highest for SN Ic, followed by type Ib,
then types IIb and II. SN IIn is the least associated with young stellar
populations and thus massive progenitors. However, statistically significant
differences in progenitor initial mass are observed only when comparing SNe IIn
with other subclasses. Stripped-envelope SN progenitors with initial mass
estimate lower than 25~ are found; these are thought to be the result
of binary progenitors. Confirming previous studies, these results support the
notion that core-collapse SN progenitors cannot arise from single-star channel
only, and both single and binary channels are at play in the production of
core-collapse SNe. [ABRIDGED]Comment: 18 pages, 10 figures, accepted to A&
Distinguishing between optical coherent states with imperfect detection
Several proposed techniques for distinguishing between optical coherent
states are analyzed under a physically realistic model of photodetection.
Quantum error probabilities are derived for the Kennedy receiver, the Dolinar
receiver and the unitary rotation scheme proposed by Sasaki and Hirota for
sub-unity detector efficiency. Monte carlo simulations are performed to assess
the effects of detector dark counts, dead time, signal processing bandwidth and
phase noise in the communication channel. The feedback strategy employed by the
Dolinar receiver is found to achieve the Helstrom bound for sub-unity detection
efficiency and to provide robustness to these other detector imperfections
making it more attractive for laboratory implementation than previously
believed
Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals
The description of realistic strongly correlated systems has recently
advanced through the combination of density functional theory in the local
density approximation (LDA) and dynamical mean field theory (DMFT). This
LDA+DMFT method is able to treat both strongly correlated insulators and
metals. Several interfaces between LDA and DMFT have been used, such as (N-th
order) Linear Muffin Tin Orbitals or Maximally localized Wannier Functions.
Such schemes are however either complex in use or additional simplifications
are often performed (i.e., the atomic sphere approximation). We present an
alternative implementation of LDA+DMFT, which keeps the precision of the
Wannier implementation, but which is lighter. It relies on the projection of
localized orbitals onto a restricted set of Kohn-Sham states to define the
correlated subspace. The method is implemented within the Projector Augmented
Wave (PAW) and within the Mixed Basis Pseudopotential (MBPP) frameworks. This
opens the way to electronic structure calculations within LDA+DMFT for more
complex structures with the precision of an all-electron method. We present an
application to two correlated systems, namely SrVO3 and beta-NiS (a
charge-transfer material), including ligand states in the basis-set. The
results are compared to calculations done with Maximally Localized Wannier
functions, and the physical features appearing in the orbitally resolved
spectral functions are discussed.Comment: 15 pages, 17 figure
Recommended from our members
Low density molecular gas in the galaxy
The distributions and physical conditions in molecular gas in the interstellar medium have been investigated in both the Galaxy and towards external galaxies. For example, Galactic plane surveys in the CO J =1-0 line with the Columbia 1.2-m telescope and with the Five College Radio Astronomy Observatory (FCRAO) 14-m telescopes have been able to trace spiral arms more clearly than HI surveys have been able to reveal, and indicate that most of molecular mass is contained in Giant Molecular Clouds (GMCs). Extensive maps of the whole Milky Way showed two prominent features, the 4-kpc molecular ring and the Galactic center. The physical conditions in the Galaxy have been studied by comparing the intensity of CO J =1-0 line with those of other lines, e.g., 13CO J =1-0, higher J transitions of CO, and dense gas tracers such as HCO+, CS, and HCN.
Previous studies were however strongly biased towards regions where CO emission was known to be intense. The radial distribution of molecular hydrogen shows that most of the H2 gas which is indirectly traced by observations of its associated CO emission, originates from the inner Galaxy (Dame 1993). Extending outwards from a galacto-centric distance of ~7 kpc, the H2 mass surface density decreases dramatically, and HI dominates over H2 in the outer Galaxy. What are physical conditions of molecular gas where the CO emission is relatively weak, and can we really trace all of the molecular gas through obervations of CO? These kinds of problems have not been solved yet, but are addressed in our study
- …