583 research outputs found

    Absorption Line Survey of H3+ toward the Galactic Center Sources III. Extent of the Warm and Diffuse Clouds

    Full text link
    We present follow-up observations to those of Geballe & Oka (2010), who found high column densities of H3+ ~100 pc off of the Galactic center (GC) on the lines of sight to 2MASS J17432173-2951430 (J1743) and 2MASS J17470898-2829561 (J1747). The wavelength coverages on these sightlines have been extended in order to observe two key transitions of H3+, R(3,3)l and R(2,2)l, that constrain the temperatures and densities of the environments. The profiles of the H3+ R(3,3)l line, which is due only to gas in the GC, closely matches the differences between the H3+ R(1,1)l and CO line profiles, just as it does for previously studied sightlines in the GC. Absorption in the R(2,2)l line of H3+ is present in J1747 at velocities between -60 and +100 km/s. This is the second clear detection of this line in the interstellar medium after GCIRS 3 in the Central Cluster. The temperature of the absorbing gas in this velocity range is 350 K, significantly warmer than in the diffuse clouds in other parts of the Central Molecular Zone. This indicates that the absorbing gas is local to Sgr B molecular cloud complex. The warm and diffuse gas revealed by Oka et al. (2005) apparently extends to ~100 pc, but there is a hint that its temperature is somewhat lower in the line of sight to J1743 than elsewhere in the GC. The observation of H3+ toward J1747 is compared with the recent Herschel observation of H2O+ toward Sgr B2 and their chemical relationship and remarkably similar velocity profiles are discussed.Comment: 6 pages, 3 figures, 2 tables, Accepted for publication in Publications of the Astronomical Society of Japa

    The Interstellar Medium of IRAS 08572+3915 NW: H3+ and Warm High Velocity CO

    Full text link
    We confirm the first detection of the molecular ion H3+ in an extragalactic object, the highly obscured ultraluminous galaxy IRAS 08572+3915 NW. We also have detected absorption lines of the fundamental band of CO in this galaxy. The CO absorption consists of a cold component close to the systemic velocity and warm, highly blueshifted and redshifted components. The warm blueshifted component is remarkably strong and broad and extends at least to -350 km/s. Some analogies can be drawn between the H3+ and cold CO in IRAS08572+3915 NW and the same species seen toward the Galactic center. The profiles of the warm CO components are not those expected from a dusty torus of the type thought to obscure active galactic nuclei. They are probably formed close to the dust continuum surface near the buried and active nucleus and are probably associated with an unusual and energetic event there.Comment: 21 pages, 4 postscript figures, accepted by Ap

    Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy

    Full text link
    Observationally, supernovae (SNe) are divided into subclasses pertaining to their distinct characteristics. This diversity reflects the diversity in the progenitor stars. It is not entirely clear how different evolutionary paths leading massive stars to become a SN are governed by fundamental parameters such as progenitor initial mass and metallicity. This paper places constraints on progenitor initial mass and metallicity in distinct core-collapse SN subclasses, through a study of the parent stellar populations at the explosion sites. Integral field spectroscopy (IFS) of 83 nearby SN explosion sites with a median distance of 18 Mpc has been collected and analysed, enabling detection and spectral extraction of the parent stellar population of SN progenitors. From the parent stellar population spectrum, the initial mass and metallicity of the coeval progenitor are derived by means of comparison to simple stellar population models and strong-line methods. Additionally, near-infrared IFS was employed to characterise the star formation history at the explosion sites. No significant metallicity differences are observed among distinct SN types. The typical progenitor mass is found to be highest for SN Ic, followed by type Ib, then types IIb and II. SN IIn is the least associated with young stellar populations and thus massive progenitors. However, statistically significant differences in progenitor initial mass are observed only when comparing SNe IIn with other subclasses. Stripped-envelope SN progenitors with initial mass estimate lower than 25~MM_\odot are found; these are thought to be the result of binary progenitors. Confirming previous studies, these results support the notion that core-collapse SN progenitors cannot arise from single-star channel only, and both single and binary channels are at play in the production of core-collapse SNe. [ABRIDGED]Comment: 18 pages, 10 figures, accepted to A&

    Distinguishing between optical coherent states with imperfect detection

    Full text link
    Several proposed techniques for distinguishing between optical coherent states are analyzed under a physically realistic model of photodetection. Quantum error probabilities are derived for the Kennedy receiver, the Dolinar receiver and the unitary rotation scheme proposed by Sasaki and Hirota for sub-unity detector efficiency. Monte carlo simulations are performed to assess the effects of detector dark counts, dead time, signal processing bandwidth and phase noise in the communication channel. The feedback strategy employed by the Dolinar receiver is found to achieve the Helstrom bound for sub-unity detection efficiency and to provide robustness to these other detector imperfections making it more attractive for laboratory implementation than previously believed

    Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals

    Full text link
    The description of realistic strongly correlated systems has recently advanced through the combination of density functional theory in the local density approximation (LDA) and dynamical mean field theory (DMFT). This LDA+DMFT method is able to treat both strongly correlated insulators and metals. Several interfaces between LDA and DMFT have been used, such as (N-th order) Linear Muffin Tin Orbitals or Maximally localized Wannier Functions. Such schemes are however either complex in use or additional simplifications are often performed (i.e., the atomic sphere approximation). We present an alternative implementation of LDA+DMFT, which keeps the precision of the Wannier implementation, but which is lighter. It relies on the projection of localized orbitals onto a restricted set of Kohn-Sham states to define the correlated subspace. The method is implemented within the Projector Augmented Wave (PAW) and within the Mixed Basis Pseudopotential (MBPP) frameworks. This opens the way to electronic structure calculations within LDA+DMFT for more complex structures with the precision of an all-electron method. We present an application to two correlated systems, namely SrVO3 and beta-NiS (a charge-transfer material), including ligand states in the basis-set. The results are compared to calculations done with Maximally Localized Wannier functions, and the physical features appearing in the orbitally resolved spectral functions are discussed.Comment: 15 pages, 17 figure
    corecore