2 research outputs found

    Statistical optimization of cell disruption techniques for releasing intracellular X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis spp. lactis

    No full text
    WOS: 000366238000017PubMed ID: 26584994X-prolyl dipeptidyl aminopeptidase (PepX) is an intracellular enzyme from the Gram-positive bacterium Lactococcus lactis spp. lactis NRRL B-1821, and it has commercial importance. The objective of this study was to compare the effects of several cell disruption methods on the activity of PepX. Statistical optimization methods were performed for two cavitation methods, hydrodynamic (high-pressure homogenization) and acoustic (sonication), to determine the more appropriate disruption method. Two level factorial design (2FI), with the parameters of number of cycles and pressure, and Box-Behnken design (BBD), with the parameters of cycle, sonication time, and power, were used for the optimization of the high-pressure homogenization and sonication methods, respectively. In addition, disruption methods, consisting of lysozyme, bead milling, heat treatment, freeze-thawing, liquid nitrogen, ethylenediaminetetraacetic acid (EDTA), Triton-X, sodium dodecyl sulfate (SOS), chloroform, and antibiotics, were performed and compared with the high-pressure homogenization and sonication methods. The optimized values of high-pressure homogenization were one cycle at 130 MPa providing activity of 114.47 mU ml(-1), while sonication afforded an activity of 145.09 mU ml(-1) at 28 min with 91% power and three cycles. In conclusion, sonication was the more effective disruption method, and its optimal operation parameters were manifested for the release of intracellular enzyme from a L. lactis spp. lactis strain, which is a Gram-positive bacterium. (C) 2015 Elsevier B.V. All rights reserved.Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [113Z841]This work was supported by a Research Grant from the Scientific and Technological Research Council of Turkey (TUBITAK), project no. 113Z841. We thank Gaye Ongen for her contributions
    corecore