28 research outputs found

    Up-regulation of brain-derived neurotrophic factor in primary afferent pathway regulates colon-to-bladder cross-sensitization in rat

    Get PDF
    Background In humans, inflammation of either the urinary bladder or the distal colon often results in sensory cross-sensitization between these organs. Limited information is known about the mechanisms underlying this clinical syndrome. Studies with animal models have demonstrated that activation of primary afferent pathways may have a role in mediating viscero-visceral cross-organ sensitization. Methods Colonic inflammation was induced by a single dose of tri-nitrobenzene sulfonic acid (TNBS) instilled intracolonically. The histology of the colon and the urinary bladder was examined by hematoxylin and eosin (H&E) stain. The protein expression of transient receptor potential (TRP) ion channel of the vanilloid type 1 (TRPV1) and brain-derived neurotrophic factor (BDNF) were examined by immunohistochemistry and/or western blot. The inter-micturition intervals and the quantity of urine voided were obtained from analysis of cystometrograms. Results At 3 days post TNBS treatment, the protein level of TRPV1 was increased by 2-fold (p \u3c 0.05) in the inflamed distal colon when examined with western blot. TRPV1 was mainly expressed in the axonal terminals in submucosal area of the distal colon, and was co-localized with the neural marker PGP9.5. In sensory neurons in the dorsal root ganglia (DRG), BDNF expression was augmented by colonic inflammation examined in the L1 DRG, and was expressed in TRPV1 positive neurons. The elevated level of BDNF in L1 DRG by colonic inflammation was blunted by prolonged pre-treatment of the animals with the neurotoxin resiniferatoxin (RTX). Colonic inflammation did not alter either the morphology of the urinary bladder or the expression level of TRPV1 in this viscus. However, colonic inflammation decreased the inter-micturition intervals and decreased the quantities of urine voided. The increased bladder activity by colonic inflammation was attenuated by prolonged intraluminal treatment with RTX or treatment with intrathecal BDNF neutralizing antibody. Conclusion Acute colonic inflammation increases bladder activity without affecting bladder morphology. Primary afferent-mediated BDNF up-regulation in the sensory neurons regulates, at least in part, the bladder activity during colonic inflammation

    Mast Cell-Derived Histamine Mediates Cystitis Pain

    Get PDF
    Background: Mast cells trigger inflammation that is associated with local pain, but the mechanisms mediating pain are unclear. Interstitial cystitis (IC) is a bladder disease that causes debilitating pelvic pain of unknown origin and without consistent inflammation, but IC symptoms correlate with elevated bladder lamina propria mast cell counts. We hypothesized that mast cells mediate pelvic pain directly and examined pain behavior using a murine model that recapitulates key aspects of IC. Methods and Findings: Infection of mice with pseudorabies virus (PRV) induces a neurogenic cystitis associated with lamina propria mast cell accumulation dependent upon tumor necrosis factor alpha (TNF), TNF-mediated bladder barrier dysfunction, and pelvic pain behavior, but the molecular basis for pelvic pain is unknown. In this study, both PRV-induced pelvic pain and bladder pathophysiology were abrogated in mast cell-deficient mice but were restored by reconstitution with wild type bone marrow. Pelvic pain developed normally in TNF- and TNF receptor-deficient mice, while bladder pathophysiology was abrogated. Conversely, genetic or pharmacologic disruption of histamine receptor H1R or H2R attenuated pelvic pain without altering pathophysiology. Conclusions: These data demonstrate that mast cells promote cystitis pain and bladder pathophysiology through the separable actions of histamine and TNF, respectively. Therefore, pain is independent of pathology and inflammation, an
    corecore