13 research outputs found

    Single nucleotide polymorphism rs11614913 associated with CC genotype in miR-196a2 is overrepresented in laryngeal squamous cell carcinoma, but not salivary gland tumors in Polish population

    Get PDF
    The miRNA-196a2 has shown significance in the development of various neoplasms, including head and neck squamous cell carcinoma (HNSCC). The oncogenic functionality of this miRNA is mediated via its potential to target annexin A1 mRNA, a tumor suppressor gene involved in inhibition of the NF-kappa B pathway. Interestingly, recent data indicate a susceptibility for aforementioned neoplasms in patients with the CC genotype vs the CT and TT genotypes of the rs11614913 SNP located within the DNA sequence of the miR-196a2 that results in elevated expression of the gene. To further investigate this phenomenon, we genotyped this SNP in 40 patients with laryngeal squamous cell carcinoma (LSCC), the most common tumor of the head and neck region and 60 patients with salivary gland tumors (SGT) that show a yet unexplained incidence increase in the last two decades. In agreement with previous reports, we have identified a statistically significant (p < 0.05) overrepresentation of the CC genotype in LSCC patients and demonstrated in LSCC cell lines that it results in elevated expression of miR-196a2 as compared to cell lines with the TT genotype of the respective SNP. Importantly, none of these correlations was found in patients with SGT. These findings underline the importance of the SNP rs11614913 for LSCC development in the Polish population and moreover highlight the different genetic background of the two studied neoplasms of the head and neck region

    Assessing Various Control Samples for Microarray Gene Expression Profiling of Laryngeal Squamous Cell Carcinoma

    Get PDF
    Selection of optimal control samples is crucial in expression profiling tumor samples. To address this issue, we performed microarray expression profiling of control samples routinely used in head and neck squamous cell carcinoma studies: human bronchial and tracheal epithelial cells, squamous cells obtained by laser uvulopalatoplasty and tumor surgical margins. We compared the results using multidimensional scaling and hierarchical clustering versus tumor samples and laryngeal squamous cell carcinoma cell lines. A general observation from our study is that the analyzed cohorts separated according to two dominant factors: "malignancy", which separated controls from malignant samples and "cell culture-microenvironment" which reflected the differences between cultured and non-cultured samples. In conclusion, we advocate the use of cultured epithelial cells as controls for gene expression profiling of cancer cell lines. In contrast, comparisons of gene expression profiles of cancer cell lines versus surgical margin controls should be treated with caution, whereas fresh frozen surgical margins seem to be appropriate for gene expression profiling of tumor samples.</p

    Laryngeal squamous cell carcinoma cell lines show high tolerance for siRNA-mediated CDK1 knockdown

    Get PDF
    Alterations of the cell cycle checkpoints lead to uncontrolled cell growth and result in tumorigenesis. One of the genes essential for cell proliferation and cell cycle regulation is CDK1. This makes it a potential target in cancer therapy. In our previous study we have shown upregulation of this gene in laryngeal squamous cell carcinoma (LSCC). Here we analyze the impact of siRNA-mediated CDK1 knockdown on cell proliferation and viability, measured with cell growth monitoring and colorimetric test (CCK8 assay), respectively. We proved that a reduction of CDK1 expression by more than 50% has no effect on these cellular processes in LSCC cell lines (n=2). Moreover, using microarrays, we analyzed global gene expression deregulation in these cell lines after CDK1 knockdown. We searched for enriched ontologies in the group of identified 137 differentially expressed genes (>2-fold change). Within this group we found 3 enriched pathways: protein binding (GO:0005515), mitotic nuclear division (GO:0007067) and transmembrane receptor protein tyrosine kinase signaling pathway (GO:0007169) and a group of 11 genes encoding proteins for which interaction with CDK1 was indicated with the use of bioinformatic tools. Among these genes we propose three: CDK6, CALD1 and FYN as potentially dependent on CDK1

    Loss of the MAF Transcription Factor in Laryngeal Squamous Cell Carcinoma

    Get PDF
    MAF is a transcription factor that may act either as a tumor suppressor or as an oncogene, depending on cell type. We have shown previously that the overexpressed miR-1290 influences MAF protein levels in LSCC (laryngeal squamous cell carcinoma) cell lines. In this study, we shed further light on the interaction between miR-1290 and MAF, as well as on cellular MAF protein localization in LSCC. We confirmed the direct interaction between miR-1290 and MAF 3'UTR by a dual-luciferase reporter assay. In addition, we used immunohistochemistry staining to analyze MAF protein distribution and observed loss of MAF nuclear expression in 58% LSCC samples, of which 10% showed complete absence of MAF, compared to nuclear and cytoplasmatic expression in 100% normal mucosa. Using TCGA data, bisulfite pyrosequencing and CNV analysis, we excluded the possibility that loss-of-function mutations, promoter region DNA methylation or CNV are responsible for MAF loss in LSCC. Finally, we identified genes involved in the regulation of apoptosis harboring the MAF binding motif in their promoter region by applied FIMO and DAVID GO analysis. Our results highlight the role of miR-1290 in suppressing MAF expression in LSCC. Furthermore, MAF loss or mislocalization in FFPE LSCC tumor samples might suggest that MAF acts as a LSCC tumor suppressor by regulating apoptosis.</p

    Assessing Various Control Samples for Microarray Gene Expression Profiling of Laryngeal Squamous Cell Carcinoma

    No full text
    Selection of optimal control samples is crucial in expression profiling tumor samples. To address this issue, we performed microarray expression profiling of control samples routinely used in head and neck squamous cell carcinoma studies: human bronchial and tracheal epithelial cells, squamous cells obtained by laser uvulopalatoplasty and tumor surgical margins. We compared the results using multidimensional scaling and hierarchical clustering versus tumor samples and laryngeal squamous cell carcinoma cell lines. A general observation from our study is that the analyzed cohorts separated according to two dominant factors: “malignancy”, which separated controls from malignant samples and “cell culture-microenvironment” which reflected the differences between cultured and non-cultured samples. In conclusion, we advocate the use of cultured epithelial cells as controls for gene expression profiling of cancer cell lines. In contrast, comparisons of gene expression profiles of cancer cell lines versus surgical margin controls should be treated with caution, whereas fresh frozen surgical margins seem to be appropriate for gene expression profiling of tumor samples

    The Potential Role of Selected miRNA in Uveal Melanoma Primary Tumors as Early Biomarkers of Disease Progression

    No full text
    Uveal melanoma (UM) is the most common primary tumor of the eye diagnosed in adults, associated with a high risk of metastasis and thereby, poor prognosis. Among known risk factors for the development of metastatic disease is the loss of BAP1 expression and chromosome 3 monosomy in the primary tumor. However, the expression levels of specific micro RNAs (miRNA) in tumor tissue may also serve as a valuable marker for determining the risk of metastatic disease in patients with primary uveal melanoma. In our study, we analyzed the miRNA expression data of cases selected from The Cancer Genome Atlas study on uveal melanoma, and determined a panel of 15 miRNAs differentially expressed between patients with primary and metastatic disease. Next, 6 miRNAs were validated on a group of 46 tumor samples from primary and metastatic patients. We have shown, that expression of hsa-miR-592, hsa-miR-346, and hsa-miR-1247 was significantly increased, while hsa-miR-506 and hsa-miR-513c were decreased in the tumors of patients with metastatic disease. Hsa-miR-196b expression did not differ between the two subgroups, however, we showed significant correlation with BAP1 expression. Moreover, hsa-miR-592 also showed correlation with monosomy 3 tumors. Gene ontology analysis revealed involvement of those miRNAs with cellular processes mediating the metastatic process. Our results showed that miRNAs play an important role in the deregulation of several oncogenic pathways in UM and can, thereby, promote metastatic spread to distant organs. Moreover, differentially expressed miRNAs may be used as an interesting biomarker for the assessment of metastatic risk in uveal melanoma patients

    The tumor suppressive mir-148a is epigenetically inactivated in classical Hodgkin lymphoma

    No full text
    DNA methylation was shown previously to be a crucial mechanism responsible for transcriptional deregulation in the pathogenesis of classical Hodgkin lymphoma (cHL). To identify epigenetically inactivated miRNAs in cHL, we have analyzed the set of miRNAs downregulated in cHL cell lines using bisulfite pyrosequencing. We focused on miRNAs with promoter regions located within or <1000 bp from a CpG island. Most promising candidate miRNAs were further studied in primary Hodgkin and Reed-Sternberg (HRS) cells obtained by laser capture microdissection. Last, to evaluate the function of identified miRNAs, we performed a luciferase reporter assay to confirm miRNA: mRNA interactions and therefore established cHL cell lines with stable overexpression of selected miRNAs for proliferation tests. We found a significant reverse correlation between DNA methylation and expression levels of mir-339-3p, mir-148a-3p, mir-148a-5p and mir-193a-5 demonstrating epigenetic regulation of these miRNAs in cHL cell lines. Moreover, we demonstrated direct interaction between miR-148a-3p and IL15 and HOMER1 transcripts as well as between mir-148a-5p and SUB1 and SERPINH1 transcripts. Furthermore, mir-148a overexpression resulted in reduced cell proliferation in the KM-H2 cell line. In summary, we report that mir-148a is a novel tumor suppressor inactivated in cHL and that epigenetic silencing of miRNAs is a common phenomenon in cHL

    Deregulated miRNAs contribute to silencing of B-cell specific transcription factors and activation of NF-ÎşB in classical Hodgkin lymphoma

    No full text
    Simple Summary: The role of transcriptionally deregulated miRNAs (microRNAs) in classical Hodgkin lymphoma (cHL) is still not fully understood. To address this issue, we have performed global miRNA expression profiling of commonly used cHL cell lines and we present a complete cHL miRNome (microRNome). Within this group, we identify miRNAs recurrently deregulated in cHL cell lines, and compare them to non-Hodgkin lymphoma cell lines and sorted normal CD77+ germinal centre B-cells. Moreover, we show that several of the recurrently overexpressed miRNAs in cHL cell lines, and also primary microdissected HRS (Hodgkin and Reed-Sternberg) cells, target known B-cell-related transcription factors and NF-κB inhibitors. These findings provide evidence that deregulated miRNAs contribute to the loss of B-cell phenotype and NF-κB activation observed in this lymphoma. Abstract: A hallmark of classical Hodgkin lymphoma (cHL) is the attenuation of B-cell transcription factors leading to global transcriptional reprogramming. The role of miRNAs (microRNAs) involved in this process is poorly studied. Therefore, we performed global miRNA expression profiling using RNA-seq on commonly used cHL cell lines, non-Hodgkin lymphoma cell lines and sorted normal CD77+ germinal centre B-cells as controls and characterized the cHL miRNome (microRNome). Among the 298 miRNAs expressed in cHL, 56 were significantly overexpressed and 23 downregulated (p < 0.05) compared to the controls. Moreover, we identified five miRNAs (hsa-miR-9-5p, hsa-miR-24-3p, hsa-miR-196a-5p, hsa-miR-21-5p, hsa-miR-155-5p) as especially important in the pathogenesis of this lymphoma. Target genes of the overexpressed miRNAs in cHL were significantly enriched (p < 0.05) in gene ontologies related to transcription factor activity. Therefore, we further focused on selected interactions with the SPI1 and ELF1 transcription factors attenuated in cHL and the NF-ĸB inhibitor TNFAIP3. We confirmed the interactions between hsa-miR-27a-5p:SPI1, hsa-miR-330-3p:ELF-1, hsa-miR-450b-5p:ELF-1 and hsa-miR-23a-3p:TNFAIP3, which suggest that overexpression of these miRNAs contributes to silencing of the respective genes. Moreover, by analyzing microdissected HRS cells, we demonstrated that these miRNAs are also overexpressed in primary tumor cells. Therefore, these miRNAs play a role in silencing the B-cell phenotype in cHL

    Towards effectiveness of cell free DNA based liquid biopsy in head and neck squamous cell carcinoma

    No full text
    Abstract Liquid biopsy is a minimally invasive procedure, that uses body fluids sampling to detect and characterize cancer fingerprints. It is of great potential in oncology, however there are challenges associated with the proper handling of liquid biopsy samples that need to be addressed to implement such analysis in patients’ care. Therefore, in this study we performed optimization of pre-analytical conditions and detailed characterization of cfDNA fraction (concentration, length, integrity score) in surgically treated HNSCC patients (n = 152) and healthy volunteers (n = 56). We observed significantly higher cfDNA concentration in patients compared to healthy controls (p < 0.0001) and a time dependent decrease of cfDNA concentration after tumor resection. Our results also revealed a significant increase of cfDNA concentration with age in both, healthy volunteers (p = 0.04) and HNSCC patients (p = 0.000002). Moreover, considering the multitude of HNSCC locations, we showed the lack of difference in cfDNA concentration depending on the anatomical location. Furthermore, we demonstrated a trend toward higher cfDNA length (range 35–10380 and 500–10380 bp) in the group of patients with recurrence during follow-up. In conclusion, our study provide a broad characterization of cfDNA fractions in HNSCC patients and healthy controls. These findings point to several aspects necessary to consider when implementing liquid biopsy in clinical practice including: (I) time required for epithelial regeneration to avoid falsely elevated levels of cfDNA not resulting from active cancer, (II) age-related accumulation of nucleic acids accompanied by less efficient elimination of cfDNA and (III) higher cfDNA length in patients with recurrence during follow-up, reflecting predominance of tumor necrosis

    Fibroblasts in nodular sclerosing classical hodgkin lymphoma are defined by a specific phenotype and protect tumor cells from brentuximab-vedotin induced injury

    Get PDF
    Classical Hodgkin lymphoma (cHL) is one of the most common malignant lymphomas in Western Europe. The nodular sclerosing subtype of cHL (NS cHL) is characterized by a proliferation of fibroblasts in the tumor microenvironment, leading to fibrotic bands surrounding the lymphoma infiltrate. Several studies have described a crosstalk between the tumour cells of cHL, the Hodgkin- and Reed-Sternberg (HRS) cells, and cancer-associated fibroblasts. However, to date a deep molecular characterization of these fibroblasts is lacking. Thus, the aim of the present study is a comprehensive characterization of these fibroblasts. Gene expression profiling and methylation profiles of fibroblasts isolated from primary lymph node suspensions revealed persistent differences between fibroblasts obtained from NS cHL and lymphadenitis. NS cHL derived fibroblasts exhibit a myofibroblastic phenotype characterized by myocardin (MYOCD) expression. Moreover, TIMP3, an inhibitor of matrix metalloproteinases, was strongly upregulated in NS cHL fibroblasts, likely contributing to the accumulation of collagen in sclerotic bands of NS cHL. As previously shown for other types of cancer-associated fibroblasts, treatment by luteolin could reverse this fibroblast phenotype and decrease TIMP3 secretion. NS cHL fibroblasts showed enhanced proliferation when they were exposed to soluble factors released from HRS cells. For HRS cells, soluble factors from fibroblasts were not sufficient to protect them from Brentuximab-Vedotin induced cell death. However, HRS cells adherent to fibroblasts were protected from Brentuximab-Vedotin induced injury. In summary, we confirm the importance of fibroblasts for HRS cell survival and identify TIMP3 which probably contributes as a major factor to the typical fibrosis observed in NS cHL
    corecore