3 research outputs found
Bimodal granulocyte transit time through the human lung demonstrated by deconvolution analysis
AbstractThe lungs are an important site of granulocyte pooling. The aim of the study is to quantify pulmonary vascular granulocyte transit time using deconvolution analysis, as has previously been performed to measure pulmonary red cell transit time. Granulocyte and red cell studies were performed in separate groups of patients. Both cell types were labelled with Tc-99m, which for granulocyte labelling was complexed with hexamethylpropyleneamine oxime (HMPAO). The red cell impulse response function (IRF) was monoexponential with a median transit time of 4·3 s. The granulocyte IRF was biexponential in 19 of 22 subjects, 18 of whom had systemic inflammation (inflammatory bowel disease, systemic vasculitis or graft-vs-host disease) and four were controls without inflammatory disease. The median transit time of the fast component ranged from 20 to 25 s and of the slow component 120–138 s in the four patient groups. The fraction of cells undergoing slow transit correlated significantly with (a) mean granulocyte transit time and (b) the fraction showing shape change in vitro. We conclude that granulocyte transit time through the pulmonary circulation is bimodal and that shape-changed (activated) cells transit more slowly that non-activated cells. The size of the fraction undergoing slow transit is closely related to mean granulocyte transit time and is an important determinant of the size of the pulmonary vascular granulocyte pool
Impact of COVID-19 on Cardiovascular Testing in the United States Versus the Rest of the World
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-U.S. institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection