1,975 research outputs found
Real and virtual photons in an external constant electromagnetic field of most general form
The photon behavior in an arbitrary superposition of constant magnetic and
electric fields is considered on most general grounds basing on the first
principles like Lorentz- gauge- charge- and parity-invariance. We make model-
and approximation-independent, but still rather informative, statements about
the behavior that the requirement of causal propagation prescribes to massive
and massless branches of dispersion curves, and describe the way the eigenmodes
are polarized. We find, as a consequence of Hermiticity in the transparency
domain, that adding a smaller electric field to a strong magnetic field in
parallel to the latter causes enhancement of birefringence. We find the
magnetic field produced by a point electric charge far from it (a manifestation
of magneto-electric phenomenon). We establish degeneracies of the polarization
tensor that (under special kinematic conditions) occur due to space-time
symmetries of the vacuum left after the external field is imposed.Comment: 30 pages, 1 figure, 57 equations, reference list of 38 item
Positronium collapse and the maximum magnetic field in pure QED
A maximum value for the magnetic field is determined, which provides the full
compensation of the positronium rest mass by the binding energy in the maximum
symmetry state and disappearance of the energy gap separating the
electron-positron system from the vacuum. The compensation becomes possible
owing to the falling to the center phenomenon. The maximum magnetic field may
be related to the vacuum and describe its structure.Comment: 4 pages, accepted for publication in Phys. Rev. Letter
Strange Star Heating Events as a Model for Giant Flares of Soft Gamma-ray Repeaters
Two giant flares were observed on 5 March 1979 and 27 August 1998 from the
soft gamma-ray repeaters SGR 0526-66 and SGR 1900+14, respectively. The
striking similarity between these remarkable bursts strongly implies a common
nature. We show that the light curves of the giant bursts may be easily
explained in the model where the burst radiation is produced by the bare quark
surface of a strange star heated, for example, by impact of a massive
comet-like object.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. Letter
Measurement of the nuclear interaction length in the NaI(Tl) calorimeter
In the study of the reaction at the VEPP-2M
collider with the SND detector the nuclear interaction length of meson
in NaI(Tl) has been measured. Its value is found to be 30--50 cm in the
momentum range 0.11--0.48 GeV/. The results are compared with the values
used in the simulation programs GEANT4 and UNIMOD.Comment: accepted in JINS
Localized Wavefunctions and Magnetic Band Structure for Lateral Semiconductor Superlattices
In this paper we present calculations on the electronic band structure of a
two-dimensional lateral superlattice subject to a perpendicular magnetic field
by employing a projection operator technique based on the ray-group of
magnetotranslation operators. We construct a new basis of appropriately
symmetrized Bloch-like wavefunctions as linear combination of well-localized
magnetic-Wannier functions. The magnetic field was consistently included in the
Wannier functions defined in terms of free-electron eigenfunctions in the
presence of external magnetic field in the symmetric gauge. Using the above
basis, we calculate the magnetic energy spectrum of electrons in a lateral
superlattice with bi-directional weak electrostatic modulation. Both a square
lattice and a triangular one are considered as special cases. Our approach
based on group theory handles the cases of integer and rational magnetic fluxes
in a uniform way and the provided basis could be convenient for further both
analytic and numerical calculations.Comment: 19 pages, 5 figures. accepted to Int. J. Mod. Phys. B (April 2006
Effective anisotropy of thin nanomagnets: beyond the surface anisotropy approach
We study the effective anisotropy induced in thin nanomagnets by the nonlocal
demagnetization field (dipole-dipole interaction). Assuming a magnetization
independent of the thickness coordinate, we reduce the energy to an
inhomogeneneous onsite anisotropy. Vortex solutions exist and are ground states
for this model. We illustrate our approach for a disk and a square geometry. In
particular, we obtain good agreement between spin-lattice simulations with this
effective anisotropy and micromagnetic simulations.Comment: ReVTeX, 14 pages, 6 figure
- …
