408 research outputs found

    Thermal Evolution and Light Curves of Young Bare Strange Stars

    Get PDF
    The cooling of a young bare strange star is studied numerically by solving the equations of energy conservation and heat transport for both normal and superconducting strange quark matter inside the star. We show that the thermal luminosity from the strange star surface, due to both photon emission and e+e- pair production, may be orders of magnitude higher than the Eddington limit, for about one day for normal quark matter but possibly for up to a hundred years for superconducting quark matter, while the maximum of the photon spectrum is in hard X-rays with a mean energy of ~ 100 keV or even more. This differs both qualitatively and quantitatively from the photon emission from young neutron stars and provides a definite observational signature for bare strange stars. It is shown that the energy gap of superconducting strange quark matter may be estimated from the light curves if it is in the range from ~ 0.5 MeV to a few MeV.Comment: Ref [10] added and abstract shortened. 4 pages, 3 figures, revtex4. To be published in Phys. Rev. Letter

    On the possible observational manifestation of supernova shock impact on the neutron star magnetosphere

    Full text link
    Impact of supernova explosion on the neutron star magnetosphere in a massive binary system is considered. The supernova shock striking the NS magnetosphere filled with plasma can lead to the formation of a magnetospheric tail with significant magnetic energy. The magnetic field reconnection in the current sheet formed can convert the magnetic energy stored in the tail into kinetic energy of accelerated charged particles. Plasma instabilities excited by beams of relativistic particles can lead to the formation of a short pulse of coherent radio emission with parameters similar to those of the observed bright extragalactic millisecond radio burst (Lorimer et al. 2007).Comment: 8 pages, Astron. Lett. in pres

    Induced scattering of short radio pulses

    Full text link
    Effect of the induced Compton and Raman scattering on short, bright radio pulses is investigated. It is shown that when a single pulse propagates through the scattering medium, the effective optical depth is determined by the duration of the pulse but not by the scale of the medium. The induced scattering could hinder propagation of the radio pulse only if close enough to the source a dense enough plasma is presented. The induced scattering within the relativistically moving source places lower limits on the Lorentz factor of the source. The results are applied to the recently discovered short extragalactic radio pulse.Comment: submitted to Ap
    • …
    corecore