24 research outputs found

    Multi-directed Eulerian growing networks

    Get PDF
    We introduce and analyze a model of a multi-directed Eulerian network, that is a directed and weighted network where a path exists that passes through all the edges of the network once and only once. Networks of this type can be used to describe information networks such as human language or DNA chains. We are able to calculate the strength and degree distribution in this network and find that they both exhibit a power law with an exponent between 2 and 3. We then analyze the behavior of the accelerated version of the model and find that the strength distribution has a double slope power law behavior. Finally we introduce a non-Eulerian version of the model and find that the statistical topological properties remain unchanged. Our analytical results are compared with numerical simulations.Comment: 6 pages, 5 figure

    Thermodynamic characteristics of the classical n-vector magnetic model in three dimensions

    Full text link
    The method of calculating the free energy and thermodynamic characteristics of the classical n-vector three-dimensional (3D) magnetic model at the microscopic level without any adjustable parameters is proposed. Mathematical description is perfomed using the collective variables (CV) method in the framework of the ρ4\rho^4 model approximation. The exponentially decreasing function of the distance between the particles situated at the N sites of a simple cubic lattice is used as the interaction potential. Explicit and rigorous analytical expressions for entropy,internal energy, specific heat near the phase transition point as functions of the temperature are obtained. The dependence of the amplitudes of the thermodynamic characteristics of the system for T>TcT>T_c and T<TcT<T_c on the microscopic parameters of the interaction potential are studied for the cases n=1,2,3n=1,2,3 and nn\to\infty. The obtained results provide the basis for accurate analysis of the critical behaviour in three dimensions including the nonuniversal characteristics of the system.Comment: 25 pages, 5 figure

    Surface critical behavior of random systems at the ordinary transition

    Full text link
    We calculate the surface critical exponents of the ordinary transition occuring in semi-infinite, quenched dilute Ising-like systems. This is done by applying the field theoretic approach directly in d=3 dimensions up to the two-loop approximation, as well as in d=4ϵd=4-\epsilon dimensions. At d=4ϵd=4-\epsilon we extend, up to the next-to-leading order, the previous first-order results of the ϵ\sqrt{\epsilon} expansion by Ohno and Okabe [Phys.Rev.B 46, 5917 (1992)]. In both cases the numerical estimates for surface exponents are computed using Pade approximants extrapolating the perturbation theory expansions. The obtained results indicate that the critical behavior of semi-infinite systems with quenched bulk disorder is characterized by the new set of surface critical exponents.Comment: 11 pages, 11 figure
    corecore