16 research outputs found

    Fluid flow control with transformation media

    Full text link
    We introduce a new concept for the manipulation of fluid flow around three-dimensional bodies. Inspired by transformation optics, the concept is based on a mathematical idea of coordinate transformations and physically implemented with anisotropic porous media permeable to the flow of fluids. In two situations - for an impermeable object placed either in a free-flowing fluid or in a fluid-filled porous medium - we show that the object can be coated with an inhomogeneous, anisotropic permeable medium, such as to preserve the flow that would have existed in the absence of the object. The proposed fluid flow cloak eliminates downstream wake and compensates viscous drag, hinting us at the possibility of novel propulsion techniques.Comment: 4 pages, 7 figure

    Flow stabilization with active hydrodynamic cloaks

    Get PDF
    We demonstrate that fluid flow cloaking solutions based on active hydrodynamic metamaterials exist for two-dimensional flows past a cylinder in a wide range of Reynolds numbers, up to approximately 200. Within the framework of the classical Brinkman equation for homogenized porous flow, we demonstrate using two different methods that such cloaked flows can be dynamically stable for ReRe in the range 5-119. The first, highly efficient, method is based on a linearization of the Brinkman-Navier-Stokes equation and finding the eigenfrequencies of the least stable eigen-perturbations; the second method is a direct, numerical integration in the time domain. We show that, by suppressing the Karman vortex street in the weekly turbulent wake, porous flow cloaks can raise the critical Reynolds number up to about 120, or five times greater than for a bare, uncloaked cylinder.Comment: 5 pages, 3 figure

    Transformation Optics with Photonic Band Gap Media

    Full text link
    We introduce a class of optical media based on adiabatically modulated, dielectric-only, and potentially extremely low-loss, photonic crystals. The media we describe represent a generalization of the eikonal limit of transformation optics (TO). The foundation of the concept is the possibility to fit frequency isosurfaces in the k-space of photonic crystals with elliptic surfaces, allowing them to mimic the dispersion relation of light in anisotropic effective media. Photonic crystal cloaks and other TO devices operating at visible wavelengths can be constructed from optically transparent substances like glasses, whose attenuation coefficient can be as small as 10 dB/km, suggesting the TO design methodology can be applied to the development of optical devices not limited by the losses inherent to metal-based, passive metamaterials.Comment: 4 pages, 4 figure

    Wide-angle infrared absorber based on negative index plasmonic metamaterial

    Full text link
    A metamaterials-based approach to making a wide-angle absorber of infrared radiation is described. The technique is based on an anisotropic Perfectly Impedance Matched Negative Index Material (PIMNIM). It is shown analytically that a sub-wavelength in all three dimensions PIMNIM enables absorption of close to 100% for incidence angles up to 45deg45\deg to the normal. A specific implementation of such frequency-tunable PIMNIM based on plasmonic metamaterials is presented. Applications to infrared imaging and coherent thermal sources are described.Comment: To be published in Phys. Rev.

    Magnetic superlens-enhanced inductive coupling for wireless power transfer

    Full text link
    We investigate numerically the use of a negative-permeability "perfect lens" for enhancing wireless power transfer between two current carrying coils. The negative permeability slab serves to focus the flux generated in the source coil to the receiver coil, thereby increasing the mutual inductive coupling between the coils. The numerical model is compared with an analytical theory that treats the coils as point dipoles separated by an infinite planar layer of magnetic material [Urzhumov et al., Phys. Rev. B, 19, 8312 (2011)]. In the limit of vanishingly small radius of the coils, and large width of the metamaterial slab, the numerical simulations are in excellent agreement with the analytical model. Both the idealized analytical and realistic numerical models predict similar trends with respect to metamaterial loss and anisotropy. Applying the numerical models, we further analyze the impact of finite coil size and finite width of the slab. We find that, even for these less idealized geometries, the presence of the magnetic slab greatly enhances the coupling between the two coils, including cases where significant loss is present in the slab. We therefore conclude that the integration of a metamaterial slab into a wireless power transfer system holds promise for increasing the overall system performance

    Structurally Rigid Elastic Composites for Acoustic Imaging Countermeasures

    Get PDF
    We explore the possibilities coming from transformation acoustics and beyond for creating rigid elastic composite shells capable of suppressing the total scattering cross-section of acoustically large objects. The reported design methodology is based on generalized shape and topology optimization, and the outcomes are suitable for rapid prototyping techniques.U.S. Office of Naval Researc

    Nanophotonics: Optical time reversal with graphene

    Get PDF
    Would you ever guess that a microscopic flake of graphite could reverse the diffraction of light? An experiment that demonstrates just such an effect highlights the exciting optical applications of graphene — an atomic layer of carbon with a two-dimensional honeycomb lattice

    Engineering Electromagnetic Properties of Periodic Nanostructures Using Electrostatic Resonances

    Full text link
    Electromagnetic properties of periodic two-dimensional sub-wavelength structures consisting of closely-packed inclusions of materials with negative dielectric permittivity ϵ\epsilon in a dielectric host with positive ϵh\epsilon_h can be engineered using the concept of multiple electrostatic resonances. Fully electromagnetic solutions of Maxwell's equations reveal multiple wave propagation bands, with the wavelengths much longer than the nanostructure period. It is shown that some of these bands are described using the quasi-static theory of the effective dielectric permittivity ϵqs\epsilon_{qs}, and are independent of the nanostructure period. Those bands exhibit multiple cutoffs and resonances which are found to be related to each other through a duality condition. An additional propagation band characterized by a negative magnetic permeability develops when a magnetic moment is induced in a given nano-particle by its neighbors. Imaging with sub-wavelength resolution in that band is demonstrated

    Thin low-loss dielectric coatings for free-space cloaking

    Get PDF
    We report stereolithographic polymer-based fabrication and experimental operation of a microwave X-band cloaking device. The device is a relatively thin (about one wavelength thick) shell of an air-dielectric composite, in which the dielectric component has negligible loss and dispersion. In a finite band (9.7–10.1 GHz), the shell eliminates the shadow and strongly suppresses scattering from a conducting cylinder of six-wavelength diameter for TE-polarized free-space plane waves. The device does not require an immersion liquid or conducting ground planes for its operation. The dielectric constant of the polymer is low enough (ϵ 2.45) to suggest that this cloaking technique would be suitable for higher frequency radiation, including visible light.U.S. Army Research Office; Multidisciplinary University Research Initiative (Grant No. W911NF-09-1-0539)

    Going beyond Axisymmetry: 2.5D Vector Electromagnetics

    Get PDF
    Linear wave propagation through inhomogeneous structures of size R≫λ (Fig.1) is a computationally challenging problem, in particular when using finite element methods, due to the steep increase of the number of degrees of freedom as a function of R/λ. Fortunately, when the geometry of the problem possesses symmetries, one may choose an appropriate basis in which the stiffness matrix of the discretized problem is block-diagonal. A particular scenario is the case of a cylindrically-symmetric geometry, where an appropriate basis is the set of cylindrical waves with all possible azimuthal numbers (m). Each of the excited cylindrical harmonics propagate through the structure independently of all other harmonics, and therefore the fields associated with that harmonic can be found by solving an essentially two-dimensional PDE problem in the ρ-z (half)-plane. The cylindrical waves have a prescribed dependence on the azimuthal angle variable (φ), hence the name – 2.5D electromagnetics. This novel approach is applied to the problem of cloaking and wave scattering off a spherical nanoparticle on metallic and/or dielectric substrates.COMSOL, Inc
    corecore