21 research outputs found
The coherence of autism
There is a growing body of opinion that we should view autism as fractionable into different, largely independent sets of clinical features. The alternative view is that autism is a coherent syndrome in which principal features of the disorder stand in intimate developmental relationship with each other. Studies of congenitally blind children offer support for the latter position and suggest that a source of coherence in autism is restriction in certain forms of perceptually dependent social experience
Distinct expression patterns of two Arabidopsis phytocystatin genes, AtCYS1 and AtCYS2, during development and abiotic stresses
The phytocystatins of plants are members of the cystatin superfamily of proteins, which are potent inhibitors of cysteine proteases. The Arabidopsis genome encodes seven phytocystatin isoforms (AtCYSs) in two distantly related AtCYS gene clusters. We selected AtCYS1 and AtCYS2 as representatives for each cluster and then generated transgenic plants expressing the GUS reporter gene under the control of each gene promoter. These plants were used to examine AtCYS expression at various stages of plant development and in response to abiotic stresses. Histochemical analysis of AtCYS1 promoter- and AtCYS2 promoter-GUS transgenic plants revealed that these genes have similar but distinct spatial and temporal expression patterns during normal development. In particular, AtCYS1 was preferentially expressed in the vascular tissue of all organs, whereas AtCYS2 was expressed in trichomes and guard cells in young leaves, caps of roots, and in connecting regions of the immature anthers and filaments and the style and stigma in flowers. In addition, each AtCYS gene has a unique expression profile during abiotic stresses. High temperature and wounding stress enhanced the expression of both AtCYS1 and AtCYS2, but the temporal and spatial patterns of induction differed. From these data, we propose that these two AtCYS genes play important, but distinct, roles in plant development and stress responses
The effect of osteoprotegerin administration on the intra-tibial growth of the osteoblastic LuCaP 23.1 prostate cancer xenograft
Osteoprotegerin (OPG) plays a central role in controlling bone resorption. Exogenous administration of OPG has been shown to be effective in preventing osteolysis and limiting the growth of osteolytic metastasis. The objective of this study was to investigate the effects of OPG on osteoblastic prostate cancer (CaP) metastases in an animal model. LuCaP 23.1 cells were injected intra-tibially and Fc-OPG (6.0 mg/kg) was administered subcutaneously three times a week starting either 24 hours prior to cell injection (prevention regimen) or at 4 weeks post-injection (treatment regimen). Changes in bone mineral density at the tumor site were determined by dual x-ray absorptiometry. Tumor growth was monitored by evaluating serum prostate specific antigen (PSA). Fc-OPG did not inhibit establishment of osteoblastic bone lesions of LuCaP 23.1, but it decreased growth of the tumor cells, as determined by decreases in serum PSA levels of 73.0 ± 44.3% ( P < 0.001) and 78.3 ± 25.3% ( P < 0.001) under the treatment and prevention regimens, respectively, compared to the untreated tumor-bearing animals. Administration of Fc-OPG decreased the proliferative index by 35.0% ( P = 0.1838) in the treatment group, and 75.2% ( P = 0.0358) in the prevention group. The results of this study suggest a potential role for OPG in the treatment of established osteoblastic CaP bone metastases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42587/1/10585_2004_Article_2869.pd