13 research outputs found

    Influence of Hot Deformation on the Precipitation Hardening of High-Strength Aluminum AA7075 during Thermo-Mechanical Processing

    No full text
    The aim of this work was to investigate the effect of hot deformation on the aging behavior of precipitation-hardenable aluminum alloy AA7075 within a novel thermo-mechanical forming process, in order to gain insight into its precipitation kinetics. For this purpose, the material was formed at 420 °C after undergoing solution treatment to different strain levels ranging from 2% to 10% to obtain different dislocation densities. After undergoing hot deformation, aging at 120 °C with different parameters was carried out to improve the material hardness. The resulting material properties and microstructure evolution were characterized afterward using hardness measurements and a transmission electron microscope (TEM). TEM investigations revealed the formation of very fine particles for the material formed at 2%, as well as at 10%, of formed material, which act as effective barriers to dislocation motion. It was found that the response of artificial aging on the deformation degree in hot forming was less than expected due to the thermally activated mechanisms, leading to a decrease in dislocation density. Therefore, a dramatic increase in material hardness with the increase in hot deformation was not observed

    Effect of Thermo-Mechanically Activated Precipitation on the Hot Deformation Behavior of High Strength Aluminum Alloy AA7075

    No full text
    The present study investigates the effect of two different microstructural conditions on the hot deformation behavior of precipitation-hardenable AA7075 by compression tests ranging from 200 °C to 350 °C and strain rates from 0.1 s−1 to 10 s−1. The first condition is solution heat-treated and quenched in water, whereas the second condition is achieved by subsequent artificial aging and stabilization for 24 h at the respective intended deformation temperature. Both conditions indicate an increase in flow stress with increasing strain rate and decreasing deformation temperature. Moreover, with increasing deformation temperature and decreasing strain rate, the flow behavior gradually changes as dynamic recrystallization becomes the dominant factor for the flow curve appearance. At the same deformation temperature, higher flow stresses are obtained for the as-quenched condition due to the dynamic precipitation and growth of very small precipitates (r < 20 nm) during hot deformation. For the deformation temperature of 200 °C and the strain rate of 10 s−1, higher peak stresses of 110 MPa are obtained for the as-quenched condition. This is confirmed by the transmission electron microscopy investigations, which show the formation of very fine precipitates for the as-quenched condition, while coarse precipitates can be found in the stabilized microstructure. Despite this observation, the work hardening analysis reveals lower strain-hardening rates for the as-quenched condition and higher critical stresses for the onset of dynamic recrystallization compared to the thermally stabilized microstructure
    corecore