9 research outputs found
data_sheet_1_Peripheral T Cell Depletion by FTY720 Exacerbates Hypoxic-Ischemic Brain Injury in Neonatal Mice.pdf
<p>Hypoxic-ischemic injury to the developing brain remains a major cause of significant long-term morbidity and mortality. Emerging evidence from neonatal brain injury models suggests a detrimental role for peripheral lymphocytes. The immunomodulatory substance FTY720, a sphingosine-1-phosphate receptor agonist, was shown to reduce adult ischemia-induced neurodegeneration through its lymphopenic mode of action. In the present study, we hypothesized that FTY720 promotes neuroprotection by reducing peripheral lymphocytes and their infiltration into the injured neonatal brain. Term-born equivalent postnatal day 9 C57BL/6 mice were exposed to hypoxia ischemia (HI) followed by a single injection of 1 mg/kg FTY720 or vehicle (0.9% sodium chloride). Brain injury, microglia, and endothelial activation were assessed 7 days post HI using histology and western blot. Peripheral and cerebral leukocyte subsets were analyzed by multichannel flow cytometry. Whether FTY720s’ effects could be attributed to its lymphopenic mode of action was determined in T cell-depleted mice. In contrast to our hypothesis, FTY720 exacerbated HI-induced neuropathology including loss of gray and white matter structures. While microglia and endothelial activation remained unchanged, FTY720 induced a strong and sustained depletion of peripheral T cells resulting in significantly reduced cerebral infiltration of CD4 T cells. CD4 T cell subset analysis revealed that circulating regulatory and effector T cells counts were similarly decreased after FTY720 treatment. However, since neonatal HI per se induces a selective infiltration of Foxp3 positive regulatory T cells compared to Foxp3 negative effector T cells effects of FTY720 on cerebral regulatory T cell infiltration were more pronounced than on effector T cells. Reductions in T lymphocytes, and particularly regulatory T cells coincided with an increased infiltration of innate immune cells, mainly neutrophils and inflammatory macrophages. Importantly anti-CD3-mediated T cell depletion resulted in a similar exacerbation of brain injury, which was not further enhanced by an additional FTY720 treatment. In summary, peripheral T cell depletion by FTY720 resulted in increased infiltration of innate immune cells concomitant to reduced T cell infiltration and exacerbation HI-induced brain injury. This study indicates that neonatal T cells may promote endogenous neuroprotection in the term-born equivalent hypoxic-ischemic brain potentially providing new opportunities for therapeutic intervention.</p
Image_1.PDF
<p>Prematurely born infants are highly susceptible to various environmental factors, such as inflammation, drug exposure, and also high environmental oxygen concentrations. Hyperoxia induces perinatal brain injury affecting white and gray matter development. It is well known that mitogen-activated protein kinase signaling is involved in cell survival, proliferation, and differentiation. Therefore, we aim to elucidate cell-specific responses of neuronal overexpression of the small GTPase Ras on hyperoxia-mediated brain injury. Six-day-old (P6) synRas mice (neuronal Ras overexpression under the synapsin promoter) or wild-type littermates were kept under hyperoxia (80% oxygen) or room air (21% oxygen) for 24 h. Apoptosis was analyzed by Western blot of cleaved Caspase-3 and neuronal and oligodendrocyte degeneration via immunohistochemistry. Short-term differentiation capacity of oligodendrocytes was assessed by quantification of myelin basic protein expression at P11. Long-lasting changes of hyperoxia-induced alteration of myelin structures were evaluated via transmission electron microscopy in young adult animals (P42). Western blot analysis of active Caspase-3 demonstrates a significant upregulation in wild-type littermates exposed to hyperoxia whereas synRas mice did not show any marked alteration of cleaved Caspase-3 protein levels. Immunohistochemistry revealed a protective effect of neuronal Ras overexpression on neuron and oligodendrocyte survival. Hyperoxia-induced hypomyelination in wild-type littermates was restored in synRas mice. These short-term protective effects through promotion of neuronal survival translated into long-lasting improvement of ultrastructural alterations of myelin sheaths in mice with neuronal overexpression of Ras compared with hyperoxic wild-type mice. Our data suggest that transgenic increase of neuronal Ras activity in the immature brain results in secondary protection of oligodendrocytes from hyperoxia-induced white matter brain injury.</p
Additional file 1 of Hypothermia combined with extracellular vesicles from clonally expanded immortalized mesenchymal stromal cells improves neurodevelopmental impairment in neonatal hypoxic-ischemic brain injury
Additional file 1. Supplementary figures and tables
Pathogens identified by multiplex-PCR with negative blood culture result and corresponding final diagnosis.
<p>Pathogens identified by multiplex-PCR with negative blood culture result and corresponding final diagnosis.</p
Laboratory signs of infection of the VLBW cohort with suspected Late-onset sepsis (LOS).
<p>Laboratory signs of infection of the VLBW cohort with suspected Late-onset sepsis (LOS).</p
Pathogens identified by multiplex-PCR with negative blood culture result.
<p>Pathogens identified by multiplex-PCR with negative blood culture result.</p
Final diagnosis of the VLBW cohort with suspected LOS episodes.
<p>Final diagnosis of the VLBW cohort with suspected LOS episodes.</p
Pathogens identified by multiplex-PCR or blood culture.
<p>Pathogens identified by multiplex-PCR or blood culture.</p
Clinical characteristics of the VLBW cohort with suspected LOS.
<p>Clinical characteristics of the VLBW cohort with suspected LOS.</p