5 research outputs found

    Dental Mesenchymal Stem/Stromal Cells and Their Exosomes

    No full text
    Stem cells derived from human dental pulp tissue (DP-MSC) differ from the other mesenchymal stem cells prepared from bone marrow or adipose tissue due to their embryonic origin from the neural crest and are of special interest because of their neurotropic character. Furthermore, the therapeutic potential of DP-MSCs is realized through paracrine action of extracellularly released components, for which exosomes play an important role. In this review, we intend to explore the properties of these cells with an emphasis on exosomes. The therapeutic applicability of these cells and exosomes in dental practice, neurodegenerative diseases, and many other difficultly treatable diseases, like myocardial infarction, focal cerebral ischemia, acute lung or brain injury, acute respiratory distress syndrome, acute inflammation, and several others is concisely covered. The use of cellular exosomes as an important diagnostic marker and indicator of targeted cancer therapies is also discussed, while the importance of stem cells from human exfoliated deciduous teeth as a source of evolutionally young cells for future regenerative therapies is stressed. We conclude that exosomes derived from these cells are potent therapeutic tools for regenerative medicine in the near future as clinical administration of DP-MSC-conditioned medium and/or exosomes is safer and more practical than stem cells

    Low-Dose-Rate Radiation-Induced Secretion of TGF-β3 Together with an Activator in Small Extracellular Vesicles Modifies Low-Dose Hyper-Radiosensitivity through ALK1 Binding

    No full text
    Hyper-radiosensitivity (HRS) is the increased sensitivity to low doses of ionizing radiation observed in most cell lines. We previously demonstrated that HRS is permanently abolished in cells irradiated at a low dose rate (LDR), in a mechanism dependent on transforming growth factor β3 (TGF-β3). In this study, we aimed to elucidate the activation and receptor binding of TGF-β3 in this mechanism. T-47D cells were pretreated with inhibitors of potential receptors and activators of TGF-β3, along with addition of small extracellular vesicles (sEVs) from LDR primed cells, before their radiosensitivity was assessed by the clonogenic assay. The protein content of sEVs from LDR primed cells was analyzed with mass spectrometry. Our results show that sEVs contain TGF-β3 regardless of priming status, but only sEVs from LDR primed cells remove HRS in reporter cells. Inhibition of the matrix metalloproteinase (MMP) family prevents removal of HRS, suggesting an MMP-dependent activation of TGF-β3 in the LDR primed cells. We demonstrate a functional interaction between TGF-β3 and activin receptor like kinase 1 (ALK1) by showing that TGF-β3 removes HRS through ALK1 binding, independent of ALK5 and TGF-βRII. These results are an important contribution to a more comprehensive understanding of the mechanism behind TGF-β3 mediated removal of HRS

    Gene-Directed Enzyme/Prodrug Therapy of Rat Brain Tumor Mediated by Human Mesenchymal Stem Cell Suicide Gene Extracellular Vesicles In Vitro and In Vivo

    No full text
    MSC-driven, gene-directed enzyme prodrug therapy (GDEPT) mediated by extracellular vesicles (EV) represents a new paradigm—cell-free GDEPT tumor therapy. In this study, we tested the efficacy of yeast cytosine deaminase::uracilphosphoribosyl transferase (yCD::UPRT-MSC)-exosomes, in the form of conditioned medium (CM) to inhibit the growth of C6 glioblastoma cells both in vitro and in vivo. MSCs isolated from human adipose tissue, umbilical cord, or dental pulp engineered to express the yCD::UPRT gene secreted yCD::UPRT-MSC-exosomes that in the presence of the prodrug 5-fluorocytosine (5-FC), inhibited the growth of rat C6 glioblastoma cells and human primary glioblastoma cells in vitro in a dose-dependent manner. CM from these cells injected repeatedly either intraperitoneally (i.p.) or subcutaneously (s.c.), applied intranasally (i.n.), or infused continuously by an ALZET osmotic pump, inhibited the growth of cerebral C6 glioblastomas in rats. A significant number of rats were cured when CM containing yCD::UPRT-MSC-exosomes conjugated with 5-FC was repeatedly injected i.p. or applied i.n. Cured rats were subsequently resistant to challenges with higher doses of C6 cells. Our data have shown that cell-free GDEPT tumor therapy mediated by the yCD::UPRT-MSC suicide gene EVs for high-grade glioblastomas represents a safer and more practical approach that is worthy of further investigation

    Suicide-Gene-Modified Extracellular Vesicles of Human Primary Uveal Melanoma in Future Therapies

    No full text
    Extracellular vesicles secreted from uveal melanoma (UM) cells are involved in the establishment of the premetastatic niche and display transforming potential for the formation of metastases, preferentially in the liver. In this study, we cultivated human primary UM cells and uveal melanoma-associated fibroblasts in vitro to be transduced by infection with a retrovirus containing the suicide gene—fused yeast cytosine deaminase::uracil phospho-ribosyl transferase (yCD::UPRT). A homogenous population of yCD::UPRT-UM cells with the integrated provirus expressed the gene, and we found it to continuously secrete small extracellular vesicles (sEVs) possessing mRNA of the suicide gene. The yCD::UPRT-UM-sEVs were internalized by tumor cells to the intracellular conversion of the prodrug 5-fluorocytosine (5-FC) to the cytotoxic drug 5-fluorouracil (5-FU). The host range of the yCD::UPRT-UM-sEVs was not limited to UMs only. The yCD::UPRT-UM-sEVs inhibited the growth of the human cutaneous melanoma cell line A375 and uveal melanoma cell line MP38, as well as other primary UMs, to various extents in vitro. The yCD::UPRT-UM-sEVs hold the therapeutic and prophylactic potential to become a therapeutic drug for UM. However, the use of yCD::UPRT-UM-sEVs must first be tested in animal preclinical studies
    corecore