3 research outputs found

    Synchronous vs Asynchronous Chain Motion in α-Synuclein Contact Dynamics

    Get PDF
    α-Synuclein (α-syn) is an intrinsically unstructured 140-residue neuronal protein of uncertain function that is implicated in the etiology of Parkinson’s disease. Tertiary contact formation rate constants in α-syn, determined from diffusion-limited electron-transfer kinetics measurements, are poorly approximated by simple random polymer theory. One source of the discrepancy between theory and experiment may be that interior-loop formation rates are not well approximated by end-to-end contact dynamics models. We have addressed this issue with Monte Carlo simulations to model asynchronous and synchronous motion of contacting sites in a random polymer. These simulations suggest that a dynamical drag effect may slow interior-loop formation rates by about a factor of 2 in comparison to end-to-end loops of comparable size. The additional deviations from random coil behavior in α-syn likely arise from clustering of hydrophobic residues in the disordered polypeptide

    Geometrical analysis of cytochrome c unfolding

    Get PDF
    A geometrical model has been developed to study the unfolding of iso-1 cytochrome c. The model draws on the crystallographic data reported for this protein. These data were used to calculate the distance between specific residues in the folded state, and in a sequence of extended states defined by n = 3, 5, 7, 9, 11, 13, and 15 residue units. Exact calculations carried out for each of the 103 residues in the polypeptide chain demonstrate that different regions of the chain have different unfolding histories. Regions where there is a persistence of compact structures can be identified, and this geometrical characterization is fully consistent with analyses of time-resolved fluorescence energy-transfer (TrFET) data using dansyl-derivatized cysteine side-chain probes at positions 39, 50, 66, 85, and 99. The calculations were carried out assuming that different regions of the polypeptide chain unfold synchronously. To test this assumption, lattice Monte Carlo simulations were performed to study systematically the possible importance of asynchronicity. Calculations show that small departures from synchronous dynamics can arise if displacements of residues in the main body of the chain are much more sluggish than near-terminal residues
    corecore