214 research outputs found

    Splitting between Bright and Dark excitons in Transition Metal Dichalcogenide Monolayers

    Full text link
    The optical properties of transition metal dichalcogenide monolayers such as the two-dimensional semiconductors MoS2_2 and WSe2_2 are dominated by excitons, Coulomb bound electron-hole pairs. The light emission yield depends on whether the electron-hole transitions are optically allowed (bright) or forbidden (dark). By solving the Bethe Salpeter Equation on top of GWGW wave functions in density functional theory calculations, we determine the sign and amplitude of the splitting between bright and dark exciton states. We evaluate the influence of the spin-orbit coupling on the optical spectra and clearly demonstrate the strong impact of the intra-valley Coulomb exchange term on the dark-bright exciton fine structure splitting.Comment: 6 pages, 2 figure

    Polarization and time-resolved photoluminescence spectroscopy of excitons in MoSe2 monolayers

    Full text link
    We investigate valley exciton dynamics in MoSe2 monolayers in polarization- and time-resolved photoluminescence (PL) spectroscopy at 4K. Following circularly polarized laser excitation, we record a low circular polarization degree of the PL of typically ≀5%\leq5\%. This is about 10 times lower than the polarization induced under comparable conditions in MoS2 and WSe2 monolayers. The evolution of the exciton polarization as a function of excitation laser energy and power is monitored in PL excitation (PLE) experiments. Fast PL emission times are recorded for both the neutral exciton of ≀3\leq3 ps and for the charged exciton (trion) of 12 ps.Comment: 4 pages, 3 figure

    Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides

    Full text link
    We study the neutral exciton energy spectrum fine structure and its spin dephasing in transition metal dichalcogenides such as MoS2_2. The interaction of the mechanical exciton with its macroscopic longitudinal electric field is taken into account. The splitting between the longitudinal and transverse excitons is calculated by means of the both electrodynamical approach and k⋅p\mathbf k \cdot \mathbf p perturbation theory. This long-range exciton exchange interaction can induce valley polarization decay. The estimated exciton spin dephasing time is in the picosecond range, in agreement with available experimental data.Comment: 5 pages, 3 figure

    Exciton dynamics in WSe2 bilayers

    Full text link
    We investigate exciton dynamics in 2H-WSe2 bilayers in time-resolved photoluminescence (PL) spectroscopy. Fast PL emission times are recorded for both the direct exciton with τD\tau_{D} ~ 3 ps and the indirect optical transition with τi\tau_{i} ~ 25 ps. For temperatures between 4 to 150 K τi\tau_{i} remains constant. Following polarized laser excitation, we observe for the direct exciton transition at the K point of the Brillouin zone efficient optical orientation and alignment during the short emission time τD\tau_{D}. The evolution of the direct exciton polarization and intensity as a function of excitation laser energy is monitored in PL excitation (PLE) experiments.Comment: 4 pages, 3 figure

    Exciton Valley Dynamics probed by Kerr Rotation in WSe2 Monolayers

    Full text link
    We have experimentally studied the pump-probe Kerr rotation dynamics in WSe2_2 monolayers. This yields a direct measurement of the exciton valley depolarization time τv\tau_v. At T=4K, we find τv≈6\tau_v\approx 6ps, a fast relaxation time resulting from the strong electron-hole Coulomb exchange interaction in bright excitons. The exciton valley depolarization time decreases significantly when the lattice temperature increases with τv\tau_v being as short as 1.5ps at 125K. The temperature dependence is well explained by the developed theory taking into account the exchange interaction and a fast exciton scattering time on short-range potentials.Comment: 5 pages, 3 figure

    Carrier and polarization dynamics in monolayer MoS2

    Full text link
    In monolayer MoS2 optical transitions across the direct bandgap are governed by chiral selection rules, allowing optical valley initialization. In time resolved photoluminescence (PL) experiments we find that both the polarization and emission dynamics do not change from 4K to 300K within our time resolution. We measure a high polarization and show that under pulsed excitation the emission polarization significantly decreases with increasing laser power. We find a fast exciton emission decay time on the order of 4ps. The absence of a clear PL polarization decay within our time resolution suggests that the initially injected polarization dominates the steady state PL polarization. The observed decrease of the initial polarization with increasing pump photon energy hints at a possible ultrafast intervalley relaxation beyond the experimental ps time resolution. By compensating the temperature induced change in bandgap energy with the excitation laser energy an emission polarization of 40% is recovered at 300K, close to the maximum emission polarization for this sample at 4K.Comment: 7 pages, 7 figures including supplementary materia

    Exciton states in monolayer MoSe2: impact on interband transitions

    Full text link
    We combine linear and non-linear optical spectroscopy at 4K with ab initio calculations to study the electronic bandstructure of MoSe2 monolayers. In 1-photon photoluminescence excitation (PLE) and reflectivity we measure a separation between the A- and B-exciton emission of 220 meV. In 2-photon PLE we detect for the A- and B-exciton the 2p state 180meV above the respective 1s state. In second harmonic generation (SHG) spectroscopy we record an enhancement by more than 2 orders of magnitude of the SHG signal at resonances of the charged exciton and the 1s and 2p neutral A- and B-exciton. Our post-Density Functional Theory calculations show in the conduction band along the K−ΓK-\Gamma direction a local minimum that is energetically and in k-space close to the global minimum at the K-point. This has a potentially strong impact on the polarization and energy of the excitonic states that govern the interband transitions and marks an important difference to MoS2 and WSe2 monolayers.Comment: 8 pages, 3 figure

    Spectrally narrow exciton luminescence from monolayer MoS2 exfoliated onto epitaxially grown hexagonal BN

    Full text link
    The strong light-matter interaction in transition Metal dichalcogenides (TMDs) monolayers (MLs) is governed by robust excitons. Important progress has been made to control the dielectric environment surrounding the MLs, especially through hexagonal boron nitride (hBN) encapsulation, which drastically reduces the inhomogeneous contribution to the exciton linewidth. Most studies use exfoliated hBN from high quality flakes grown under high pressure. In this work, we show that hBN grown by molecular beam epitaxy (MBE) over a large surface area substrate has a similarly positive impact on the optical emission from TMD MLs. We deposit MoS2_2 and MoSe2_2 MLs on ultrathin hBN films (few MLs thick) grown on Ni/MgO(111) by MBE. Then we cover them with exfoliated hBN to finally obtain an encapsulated sample : exfoliated hBN/TMD ML/MBE hBN. We observe an improved optical quality of our samples compared to TMD MLs exfoliated directly on SiO2_2 substrates. Our results suggest that hBN grown by MBE could be used as a flat and charge free substrate for fabricating TMD-based heterostructures on a larger scale.Comment: 5 pages, 3 figure
    • 

    corecore