77 research outputs found

    Immobilization, Trapping, and Anion Exchange of Perrhenate Ion Using Copper-Based Tripodal Complexes

    Get PDF
    We describe a multidentate tripodal ligand in which three pendant arms carrying di(2-picolyl)amine units are linked to the ortho positions of a tris(o-xylyl) scaffold, providing N(CH[subscript 2]-o-C[subscript 6]H[subscript 4]CH[subscript 2]N(CH2py)[subscript 2])[subscript 3] (L). Reaction of L with CuCl[subscript 2] in the presence of hexafluorophosphate anion afforded blue cubes of [(CuCl)[subscript 3]L](PF[subscript 6])[subscript 3]·5H[subscript 2]O (1). Crystallographic studies of 1 revealed that the three symmetry-related arms each coordinate a {Cu[superscript II]Cl} unit, and two molecules of 1 are connected to one another through a Cu(μ-Cl)[subscript 2]Cu bridge, extending the molecular structure to form a two-dimensional (2-D) layer. These 2-D layers pack in an ABCABC... fashion with PF[subscript 6]– anions located in between. Reaction of 1 with a stoichiometric amount of perrhenate ion afforded blue plates of [(CuCl)[subscript 3]L](PF[subscript 6])(ReO[subscript 4])[subscript 2]·3H[subscript 2]O (2). Compound 2 has the same lattice structure as 1, but the tricopper unit backbone now traps one ReO[subscript 4]– anion through Coulombic interactions. In addition, three molecules of 2 are bridged by a perrhenate ion, forming a Cu[subscript 3](μ[superscript 3]-ReO[subscript 4]) cluster, to give a different 2-D structure displaying a rare tridentate bridging ReO[subscript 4]– mode. Thus, in addition to classic perrhenate trapping through weak Coulombic interactions, 2 represents an exceptional example in which the ReO[subscript 4]– anion is immobilized in an extended framework through tight covalent interactions. The interlamellar PF[subscript 6]– anions in 1 can be exchanged with other anions including perrhenate, perchlorate, or periodate. The structural similarity between perrhenate and pertechnetate makes these materials of potential interest for pertechnetate trapping

    Consolidating Heterogeneous Enterprise Data for Named Entity Linking and Web Intelligence

    Get PDF
    Linking named entities to structured knowledge sources paves the way for state-of-the-art Web intelligence applications which assign sentiment to the correct entities, identify trends, and reveal relations between organizations, persons and products. For this purpose this paper introduces Recognyze, a named entity linking component that uses background knowledge obtained from linked data repositories, and outlines the process of transforming heterogeneous data silos within an organization into a linked enterprise data repository which draws upon popular linked open data vocabularies to foster interoperability with public data sets. The presented examples use comprehensive real-world data sets from Orell Füssli Business Information, Switzerland's largest business information provider. The linked data repository created from these data sets comprises more than nine million triples on companies, the companies' contact information, key people, products and brands. We identify the major challenges of tapping into such sources for named entity linking, and describe required data pre-processing techniques to use and integrate such data sets, with a special focus on disambiguation and ranking algorithms. Finally, we conduct a comprehensive evaluation based on business news from the New Journal of Zurich and AWP Financial News to illustrate how these techniques improve the performance of the Recognyze named entity linking component

    Commentary Perchlorate levels in samples of sodium nitrate fertilizer derived from Chilean caliche

    No full text
    ``Capsule'': Sodium nitrate fertilizer, made from re®ned caliche, also contains perchlorate Ð a potential environmental contaminant. Paleogeochemical deposits in northern Chile are a rich source of naturally occurring sodium nitrate (Chile saltpeter). These ores are mined to isolate NaNO 3 (16±0±0) for use as fertilizer. Coincidentally, these very same deposits are a natural source of perchlorate anion (ClO4 �). At su�ciently high concentrations, perchlorate interferes with iodide uptake in the thyroid gland and has been used medicinally for this purpose. In 1997, perchlorate contamination was discovered in a number of US water supplies, including Lake Mead and the Colorado River. Subsequently, the Environmental Protection Agency added this species to the Contaminant Candidate List for drinking water and will begin assessing occurrence via the Unregulated Contaminants Monitoring Rule in 2001. E€ective risk assessment requires characterizing possible sources, including fertilizer. Samples were analyzed by ion chromatography and con®rmed by complexation electrospray ionization mass spectrometry. Within a lot, distribution of perchlorate is nearly homogeneous, presumably due to the manufacturing process. Two di€erent lots we analyzed di€ered by 15%, containing an average of either 1.5 or 1.8 mg g �1. Inadequate sample size can lead to incorrect estimations; 100-g samples gave su�ciently consistent and reproducible results. At present, information on natural attenuation, plant uptake, use/application, and dilution is too limited to evaluate the signi®cance of these ®ndings, and further research is needed in these areas. Published b
    corecore