24 research outputs found
Recommended from our members
Multi‐Point Measurements of the Plasma Properties Inside an Aurora From the SPIDER Sounding Rocket
The Small Payloads for Investigation of Disturbances in Electrojet by Rockets (SPIDER) sounding rocket was launched on February 2nd, 2016 (21:09 UT), deploying 10 free falling units (FFUs) inside a westward traveling auroral surge. Each FFUs deployed spherical electric field and Langmuir probes on wire-booms, providing in situ multi-point recordings of the electric field and plasma properties. The analytical retrieval of the plasma parameters, namely the electron density, electron temperature and plasma potential, from the Langmuir probe measurements was non-trivial due to sheath effects and detailed explanation are discussed in this article. An empirical assumption on the sheath thickness was required, which was confirmed by simulating the plasma environment around the FFU using the Spacecraft Plasma Interaction Software (SPIS). In addition, the retrieved electron density and temperature are also in agreement with the simultaneous incoherent scatter radar measurements from the EISCAT facility. These two independent confirmations provided a good level of confidence in the plasma parameters obtained from the FFUs, and events observed during the flight are discussed in more details. Hints of drift-wave instabilities and increased currents inside a region of enhanced density were observed by the FFUs
Reconstruction of precipitating electrons and three-dimensional structure of a pulsating auroral patch from monochromatic auroral images obtained from multiple observation points
In recent years, aurora observation networks using
high-sensitivity cameras have been developed in the polar regions. These networks allow dimmer auroras, such as pulsating auroras (PsAs), to be observed with a high signal-to-noise
ratio. We reconstructed the horizontal distribution of precipitating electrons using computed tomography with monochromatic PsA images obtained from three observation points.
The three-dimensional distribution of the volume emission
rate (VER) of the PsA was also reconstructed. The characteristic energy of the reconstructed precipitating electron flux
ranged from 6 to 23 keV, and the peak altitude of the reconstructed VER ranged from 90 to 104 km. We evaluated the
results using a model aurora and compared the model’s electron density with the observed one. The electron density was
reconstructed correctly to some extent, even after a decrease
in PsA intensity. These results suggest that the horizontal distribution of precipitating electrons associated with PsAs can
be effectively reconstructed from ground-based optical observations
Tomographic inversion analysis of auroral surges observed in the Northern Scandinavia
第4回極域科学シンポジウム個別セッション:[OS] 宙空圏11月15日(金) 国立極地研究所 2階大会議
Results from the intercalibration of optical low light calibration sources 2011
Following the 38th Annual European Meeting on Atmospheric Studies by Optical Methods in Siuntio in Finland, an intercalibration workshop for optical low light calibration sources was held in Sodankylä, Finland. The main purpose of this workshop was to provide a comparable scale for absolute measurements of aurora and airglow. All sources brought to the intercalibration workshop were compared to the Fritz Peak reference source using the Lindau Calibration Photometer built by Wilhelm Barke and Hans Lauche in 1984. The results were compared to several earlier intercalibration workshops. It was found that most sources were fairly stable over time, with errors in the range of 5–25%. To further validate the results, two sources were also intercalibrated at UNIS, Longyearbyen, Svalbard. Preliminary analysis indicates agreement with the intercalibration in Sodankylä within about 15–25%.publishedVersio
Auroral tomography analysis of discrete arcs
第7回極域科学シンポジウム:[OS]宙空圏11月29日(火)統計数理研究所 3階 セミナー室D30
3D structure of eastward expanding auroral surges
第6回極域科学シンポジウム[OS] 宙空圏11月16日(月) 国立極地研究所1階交流アトリウ
The Auroral Large Imaging System : design, operation and scientific results
The Auroral Large Imaging System (ALIS) was proposed in 1989 by Åke Steen as a joint Scandinavian ground-based nework of automated auroral imaging stations. The primary scientic objective was in the field of auroral physics, but it was soon realised that ALIS could be used in other fields, for example, studies of Polar Stratospheric Clouds (PSC), meteors, as well as other atmospheric phenomena. This report describes the design, operation and scientic results from a Swedish prototype of ALIS consisting of six unmanned remote-controlled stations located in a grid of about 50 km in northern Sweden. Each station is equipped with a sensitive high-resolution (1024 x 1024 pixels) unintensified monochromatic CCDimager. A six-position filter-wheel for narrow-band interference filters facilitates absolute spectroscopic measurements of, for example, auroral and airglow emissions. Overlapping fields-of-view resulting from the station baseline of about 50 km combined with the station field-of-view of 50° to 60°, enable triangulation as well as tomographic methods to be employed for obtaining altitude information of the observed phenomena. ALIS was probably one of the first instruments to take advantage of unintensi- fied (i.e. no image-intensifier) scientific-grade CCDs as detectors for spectroscopic imaging studies with multiple stations of faint phenomena such as aurora, airglow, etc. This makes absolute calibration a task that is as important as it is dificult. Although ALIS was primarily designed for auroral studies, the majority of the scientific results so far have, quite unexpectedly, been obtained from observations of HF pump-enhanced airglow (recently renamed Radio-Induced Aurora). ALIS made the first unambiguous observation of this phenomena at high-latitudes and the first tomography-like inversion of height profiles of the airglow regions. The scientific results so far include tomographic estimates of the auroral electron spectra, coordinated observations with satellite and radar, as well as studies of polar stratospheric clouds. An ALIS imager also participated in a joint project that produced the first ground-based daytime auroral images. Recently ALIS made spectroscopic observations of a Leonid meteor-trail and preliminary analysis indicates the possible detection of water in the Leonid
On mechanisms for high-frequency pump-enhanced optical emissions at 557.7 and 630.0 nm from atomic oxygen in the high-latitude F-region ionosphere
The EISCAT (European Incoherent Scatter Scientific Association) Heating facility was used to transmit powerful high-frequency (HF) electromagnetic waves into the F-region ionosphere to enhance optical emissions at 557.7 and 630.0 nm from atomic oxygen. The emissions were imaged by several stations of ALIS (Auroral Large Imaging System) in northern Sweden, and the EISCAT UHF incoherent scatter radar was used to obtain plasma parameter values. The ratio of the 557.7 to 630.0 nm column emission rates changed from I5577/I6300 ≈ 0.2 for the HF pump frequency f0=6.200 MHz ≈ 4.6 f(e) to I5577/I6300 ≈ 0.5 when f0=5.423 MHz less than or similar to 4fe , where fe is the ionospheric electron gyro frequency. The observations are interpreted in terms of decreased electron heating efficiency and thereby weaker enhancement at 630.0 nm for f0=5.423 MHz less than or similar to 4fe. The emissions at 557.7 nm are attributed to electron acceleration by upper hybrid waves of metre-scale wavelengths that can be excited with f0=5.423 MHz less than or similar to 4fe
Solar illumination dependence of the auroral electrojet intensity: Interplay between the solar zenith angle and dipole tilt
The present study investigates the dependence of the local auroral electrojet (AEJ) intensity on solar illumination by statistically examining northward geomagnetic disturbances in the auroral zone in terms of the solar zenith angle χ. It is found that on the dayside, both westward and eastward electrojets (WEJ and EEJ) are more intense for smaller χ, suggesting that the solar extreme ultraviolet‐induced conductance is the dominant factor for the AEJ intensity. On the nightside, in contrast, the χ dependence of the AEJ intensity, if sorted solely by the magnetic local time, apparently depends on the station longitude and hemisphere. However, if additionally sorted by the dipole tilt angle ψ, a consistent pattern emerges. That is, although χ and ψ are correlated, the solar zenith angle and dipole tilt angle have physically different effects on the AEJ intensity. The nightside AEJ, especially the WEJ, tends to be more intense for smaller |ψ|. Moreover, whereas the WEJ is statistically more intense when the ionosphere is dark, the EEJ is more intense when it is sunlit. The preference of the WEJ for the dark ionosphere prevails widely in magnetic local time from premidnight to dawn, and therefore, it cannot be attributed to the previously proposed processes of the preferred monoenergetic or broadband auroral precipitation in the dark ionosphere. Instead, it may be explained, at least morphologically, in terms of the conductance enhancement due to the diffuse auroral precipitation, which is also prevalent from premidnight to dawn and is more intense in the dark hemisphere
Solar illumination dependence of the auroral electrojet intensity: Interplay between the solar zenith angle and dipole tilt
The present study investigates the dependence of the local auroral electrojet (AEJ) intensity on solar illumination by statistically examining northward geomagnetic disturbances in the auroral zone in terms of the solar zenith angle χ. It is found that on the dayside, both westward and eastward electrojets (WEJ and EEJ) are more intense for smaller χ, suggesting that the solar extreme ultraviolet‐induced conductance is the dominant factor for the AEJ intensity. On the nightside, in contrast, the χ dependence of the AEJ intensity, if sorted solely by the magnetic local time, apparently depends on the station longitude and hemisphere. However, if additionally sorted by the dipole tilt angle ψ, a consistent pattern emerges. That is, although χ and ψ are correlated, the solar zenith angle and dipole tilt angle have physically different effects on the AEJ intensity. The nightside AEJ, especially the WEJ, tends to be more intense for smaller |ψ|. Moreover, whereas the WEJ is statistically more intense when the ionosphere is dark, the EEJ is more intense when it is sunlit. The preference of the WEJ for the dark ionosphere prevails widely in magnetic local time from premidnight to dawn, and therefore, it cannot be attributed to the previously proposed processes of the preferred monoenergetic or broadband auroral precipitation in the dark ionosphere. Instead, it may be explained, at least morphologically, in terms of the conductance enhancement due to the diffuse auroral precipitation, which is also prevalent from premidnight to dawn and is more intense in the dark hemisphere