11,134 research outputs found
Anderson impurity model in nonequilibrium: analytical results versus quantum Monte Carlo data
We analyze the spectral function of the single-impurity two-terminal Anderson
model at finite voltage using the recently developed diagrammatic quantum Monte
Carlo technique as well as perturbation theory. In the
(particle-hole-)symmetric case we find an excellent agreement of the numerical
data with the perturbative results of second order up to interaction strengths
, where is the transparency of the
impurity-electrode interface. The analytical results are obtained in form of
the nonequilibrium self-energy for which we present explicit formulas in the
closed form at arbitrary bias voltage. We observe an increase of the spectral
density around zero energy brought about by the Kondo effect. Our analysis
suggests that a finite applied voltage acts as an effective temperature of
the system. We conclude that at voltages significantly larger than the
equilibrium Kondo temperature there is a complete suppression of the Kondo
effect and no resonance splitting can be observed. We confirm this scenario by
comparison of the numerical data with the perturbative results.Comment: 8 pages, 6 figure
Numerical solution of the Boltzmann equation for the collective modes of trapped Fermi gases
We numerically solve the Boltzmann equation for trapped fermions in the
normal phase using the test-particle method. After discussing a couple of tests
in order to estimate the reliability of the method, we apply it to the
description of collective modes in a spherical harmonic trap. The numerical
results are compared with those obtained previously by taking moments of the
Boltzmann equation. We find that the general shape of the response function is
very similar in both methods, but the relaxation time obtained from the
simulation is significantly longer than that predicted by the method of
moments. It is shown that the result of the method of moments can be corrected
by including fourth-order moments in addition to the usual second-order ones
and that this method agrees very well with our numerical simulations.Comment: 13 pages, 8 figures, accepted for publication in Phys. Rev.
Rabi flopping between ground and Rydberg states with dipole-dipole atomic interactions
We demonstrate Rabi flopping of small numbers of atoms between
ground and Rydberg states with . Coherent population oscillations are
observed for single atom flopping, while the presence of two or more atoms
decoheres the oscillations. We show that these observations are consistent with
van der Waals interactions of Rydberg atoms.Comment: 4 pages, 6 figure
Perturbation of magnetostatic modes observed by ferromagnetic resonance force microscopy
Magnetostatic modes of yttrium iron garnet (YIG) films are investigated by ferromagnetic resonance force microscopy. A thin-film "probe" magnet at the tip of a compliant cantilever introduces a local inhomogeneity in the internal field of the YIG sample. This influences the shape of the sample's magnetostatic modes, thereby measurably perturbing the strength of the force coupled to the cantilever. We present a theoretical model that explains these observations; it shows that the tip-induced variation of the internal field creates either a local "potential barrier" or "potential well" for the magnetostatic waves. The data and model together indicate that local magnetic imaging of ferromagnets is possible, even in the presence of long-range spin coupling, through the introduction of localized magnetostatic modes predicted to arise from sufficiently strong tip fields
The second US Naval Observatory CCD Astrograph Catalog (UCAC2)
The second USNO CCD Astrograph Catalog, UCAC2 was released in July 2003.
Positions and proper motions for 48,330,571 sources (mostly stars) are
available on 3 CDs, supplemented with 2MASS photometry for 99.5% of the
sources. The catalog covers the sky area from -90 to +40 degrees declination,
going up to +52 in some areas; this completely supersedes the UCAC1 released in
2001. Current epoch positions are obtained from observations with the USNO
8-inch Twin Astrograph equipped with a 4k CCD camera. The precision of the
positions are 15 to 70 mas, depending on magnitude, with estimated systematic
errors of 10 mas or below. Proper motions are derived by utilizing over 140
ground-and space-based catalogs, including Hipparcos/Tycho, the AC2000.2, as
well as yet unpublished re-measures of the AGK2 plates and scans from the NPM
and SPM plates. Proper motion errors are about 1 to 3 mas/yr for stars to 12th
magnitude, and about 4 to 7 mas/yr for fainter stars to 16th magnitude. The
observational data, astrometric reductions, results, and important information
for the users of this catalog are presented.Comment: accepted by AJ, AAS LaTeX, 14 figures, 10 table
Hazardous Product Detection and Environmental Clean-up Removal in Spacecraft Vehicles from Fire Induced Li-Ion Fires
A fire on-board the International Space Station (ISS) resulting from a commercial Surface Pro tablet Lithium-Ion (Li-ion) battery can be detrimental to the spacercraft and the astronauts. The Spacecraft Fire Safety Demonstration (Saffire) program is focused on identifying and quantifying the risks that potentially arise inside a space vehicle by conducting large fire experiments inside the Cygnus cargo vehicle upon re-entry to Earth. The potential candidate that will be flown on the ISS is a 4- cell Li-ion battery pack Surface Pro tablet (42 Wh). The tablets were tested at the White Sands Test Facility (WSTF) using a localized heating method to emulate the failing mechanism that leads the unit into thermal runaway. Measurements inside the test chamber were performed on aerosol mass concentrations and for specific toxic products (i.e. from CO, HCN, HCl and CO2). These toxic products depend on the size of the fire and energy content of the tablet. Comparisons will be made with the Dell XPS (97 Wh). The concentrations are then used to extrapolate to laptop fires on a vehicle at the approximate volumetric size of the Orion spacecraft. The presentation provides an analysis on the detection capability and the response time to trigger fire alarms aboard a vehicle by using the mass concentration levels. These results will consider the rate at which the life support system is able to filter the atmosphere in order to provide a hazardous free environment
Denominators of Eisenstein cohomology classes for GL_2 over imaginary quadratic fields
We study the arithmetic of Eisenstein cohomology classes (in the sense of G.
Harder) for symmetric spaces associated to GL_2 over imaginary quadratic
fields. We prove in many cases a lower bound on their denominator in terms of a
special L-value of a Hecke character providing evidence for a conjecture of
Harder that the denominator is given by this L-value. We also prove under some
additional assumptions that the restriction of the classes to the boundary of
the Borel-Serre compactification of the spaces is integral. Such classes are
interesting for their use in congruences with cuspidal classes to prove
connections between the special L-value and the size of the Selmer group of the
Hecke character.Comment: 37 pages; strengthened integrality result (Proposition 16), corrected
statement of Theorem 3, and revised introductio
- …