8 research outputs found

    Structure-based optimization of potent, selective, and orally bioavailable CDK8 inhibitors discovered by high-throughput screening

    Get PDF
    The mediator complex-associated cyclin dependent kinase CDK8 regulates beta-catenin-dependent transcription following activation of WNT signaling. Multiple lines of evidence suggest CDK8 may act as an oncogene in the development of colorectal cancer. Here we describe the successful optimization of an imidazo-thiadiazole series of CDK8 inhibitors that was identified in a high-throughput screening campaign and further progressed by structure-based design. In several optimization cycles, we improved the microsomal stability, potency, and kinase selectivity. The initial imidazo-thiadiazole scaffold was replaced by a 3-methyl-1H-pyrazolo[3,4-b]-pyridine which resulted in compound 25 (MSC2530818) that displayed excellent kinase selectivity, biochemical and cellular potency, microsomal stability, and is orally bioavailable. Furthermore, we demonstrated modulation phospho-STAT1, a pharmacodynamic biomarker of CDK8 activity, and tumor growth inhibition in an APC mutant SW620 human colorectal carcinoma xenograft model after oral administration. Compound 25 demonstrated suitable potency and selectivity to progress into preclinical in vivo efficacy and safety studies

    2,8-Disubstituted-1,6-Naphthyridines and 4,6-Disubstituted-Isoquinolines with Potent, Selective Affinity for CDK8/19

    Get PDF
    We demonstrate a designed scaffold-hop approach to the discovery of 2,8-disubstituted-1,6-naphthyridine- and 4,6-disubstituted-isoquinoline-based dual CDK8/19 ligands. Optimized compounds in both series exhibited rapid aldehyde oxidase-mediated metabolism, which could be abrogated by introduction of an amino substituent at C5 of the 1,6-naphthyridine scaffold or at C1 of the isoquinoline scaffold. Compounds 51 and 59 were progressed to in vivo pharmacokinetic studies, and 51 also demonstrated sustained inhibition of STAT1SER727 phosphorylation, a biomarker of CDK8 inhibition, in an SW620 colorectal carcinoma human tumor xenograft model following oral dosing

    Crystalline sponges as a sensitive and fast method for metabolite identification: Application to gemfibrozil and its phase I and II metabolites

    Full text link
    Understanding the metabolism of new drug candidates is important during drug discovery and development, as circulating metabolites may contribute to efficacy or cause safety issues. In the early phase of drug discovery, human in vitro systems are used to investigate human relevant metabolism. Though conventional techniques are limited in their ability to provide complete molecular structures of metabolites (liquid chromatography mass spectrometry) or require a larger amount of material not available from in vitro incubation (nuclear magnetic resonance), we here report for the first time the use of the crystalline sponge method to identify phase I and phase II metabolites generated from in vitro liver microsomes or S9 fractions. Gemfibrozil was used as a test compound. Metabolites generated from incubation with microsomes or S9 fractions, were fractionated using online fraction collection. After chromatographic purification and fractionation of the generated metabolites, single crystal X-ray diffraction of crystalline sponges was used to identify the structure of gemfibrozil metabolites. This technique allowed for complete structure elucidation of 5'-CH2OH gemfibrozil (M1), 4'-OH gemfibrozil (M2), 5'-COOH gemfibrozil (M3), and the acyl glucuronide of gemfibrozil, 1-O-ÎČ-glucuronide (M4), the first acyl glucuronide available in the Cambridge Crystallographic Data Centre. Our study shows that when optimal soaking is possible, crystalline sponges technology is a sensitive (nanogram amount) and fast (few days) method that can be applied early in drug discovery to identify the structure of pure metabolites from in vitro incubations. SIGNIFICANCE STATEMENT: Complete structure elucidation of human metabolites plays a critical role in early drug discovery. Low amounts of material (nanogram) are only available at this stage and insufficient for nuclear magnetic resonance analysis. The crystalline sponge method has the potential to close this gap, as demonstrated in this study

    Stable and Storable N(CF3_{3})2_{2} Transfer Reagents

    Full text link
    Fluorinated groups are essential for drug design, agrochemicals, and materials science. The bis(trifluoromethyl)amino group is an example of a stable group that has a high potential. While the number of molecules containing perfluoroalkyl, perfluoroalkoxy, and other fluorinated groups is steadily increasing, examples with the N(CF3_{3})2_{2} group are rare. One reason is that transfer reagents are scarce and metal-based storable reagents are unknown. Herein, a set of CuI^{I} and AgI^{I} bis(trifluoromethyl)amido complexes stabilized by N- and P-donor ligands with unprecedented stability are presented. The complexes are stable solids that can even be manipulated in air for a short time. They are bis(trifluoromethyl)amination reagents as shown by nucleophilic substitution and Sandmeyer reactions. In addition to a series of benzylbis(trifluoromethyl)amines, 2-bis(trifluoromethyl)amino acetate was obtained, which, upon hydrolysis, gives the fluorinated amino acid N,N-bis(trifluoromethyl)glycine
    corecore