1,438 research outputs found

    Two-dimensional melting far from equilibrium in a granular monolayer

    Full text link
    We report an experimental investigation of the transition from a hexagonally ordered solid phase to a disordered liquid in a monolayer of vibrated spheres. The transition occurs as the intensity of the vibration amplitude is increased. Measurements of the density of dislocations and the positional and orientational correlation functions show evidence for a dislocation-mediated continuous transition from a solid phase with long-range order to a liquid with only short-range order. The results show a strong similarity to simulations of melting of hard disks in equilibrium, despite the fact that the granular monolayer is far from equilibrium due to the effects of interparticle dissipation and the vibrational forcing.Comment: 4 pages, 4 figure

    Effect of inelasticity on the phase transitions of a thin vibrated granular layer

    Full text link
    We describe an experimental and computational investigation of the ordered and disordered phases of a vibrating thin, dense granular layer composed of identical metal spheres. We compare the results from spheres with different amounts of inelasticity and show that inelasticity has a strong effect on the phase diagram. We also report the melting of an ordered phase to a homogeneous disordered liquid phase at high vibration amplitude or at large inelasticities. Our results show that dissipation has a strong effect on ordering and that in this system ordered phases are absent entirely in highly inelastic materials.Comment: 5 pages, 5 figures, published in Physical Review E. Title of first version slightly change

    The effects of forcing and dissipation on phase transitions in thin granular layers

    Full text link
    Recent experimental and computational studies of vibrated thin layers of identical spheres have shown transitions to ordered phases similar to those seen in equilibrium systems. Motivated by these results, we carry out simulations of hard inelastic spheres forced by homogenous white noise. We find a transition to an ordered state of the same symmetry as that seen in the experiments, but the clear phase separation observed in the vibrated system is absent. Simulations of purely elastic spheres also show no evidence for phase separation. We show that the energy injection in the vibrated system is dramatically different in the different phases, and suggest that this creates an effective surface tension not present in the equilibrium or randomly forced systems. We do find, however, that inelasticity suppresses the onset of the ordered phase with random forcing, as is observed in the vibrating system, and that the amount of the suppression is proportional to the degree of inelasticity. The suppression depends on the details of the energy injection mechanism, but is completely eliminated when inelastic collisions are replaced by uniform system-wide energy dissipation.Comment: 10 pages, 5 figure

    The dynamics of thin vibrated granular layers

    Full text link
    We describe a series of experiments and computer simulations on vibrated granular media in a geometry chosen to eliminate gravitationally induced settling. The system consists of a collection of identical spherical particles on a horizontal plate vibrating vertically, with or without a confining lid. Previously reported results are reviewed, including the observation of homogeneous, disordered liquid-like states, an instability to a `collapse' of motionless spheres on a perfect hexagonal lattice, and a fluctuating, hexagonally ordered state. In the presence of a confining lid we see a variety of solid phases at high densities and relatively high vibration amplitudes, several of which are reported for the first time in this article. The phase behavior of the system is closely related to that observed in confined hard-sphere colloidal suspensions in equilibrium, but with modifications due to the effects of the forcing and dissipation. We also review measurements of velocity distributions, which range from Maxwellian to strongly non-Maxwellian depending on the experimental parameter values. We describe measurements of spatial velocity correlations that show a clear dependence on the mechanism of energy injection. We also report new measurements of the velocity autocorrelation function in the granular layer and show that increased inelasticity leads to enhanced particle self-diffusion.Comment: 11 pages, 7 figure

    Forcing and Velocity Correlations in a Vibrated Granular Monolayer

    Full text link
    The role of forcing on the dynamics of a vertically shaken granular monolayer is investigated. Using a flat plate, surprising negative velocity correlations are measured. A mechanism for this anti-correlation is proposed with support from both experimental results and molecular dynamics simulations. Using a rough plate, velocity correlations are positive, and the velocity distribution evolves from a gaussian at very low densities to a broader distribution at high densities. These results are interpreted as a balance between stochastic forcing, interparticle collisions, and friction with the plate.Comment: 4 pages, 5 figure
    • …
    corecore