1,045 research outputs found

    H2O2 adsorption and dissociation on various CeO2(111) surface models: a first-principles study

    Get PDF
    Periodic density functional theory (DFT) calculations using the hybrid PBE0 functional and atom-centered Gaussian functions as basis sets were carried out to investigate the absorption and the first steps involved in the decomposition of hydrogen peroxide (H2O2) on three different models of the ceria (111) surface. One of the models is a clean surface, and the others are defective and partially hydroxylated ceria surfaces. On the clean surface, we found that the minimum energy path of hydrogen peroxide decomposition involves a three-step process, i.e., adsorption, deprotonation, and formation of the peroxide anion, stabilized through its interaction with the surface at a Ce (IV) site, with activation barriers of less than about 0.5 eV. The subsequent formation of superoxide anions and molecular oxygen species is attributed to electron transfer from the reactants to the Ce (IV) ions underneath. On the defective surface, H2O2dissociation is an energetically downhill reaction thermodynamically driven by the healing of the O vacancies, after the reduction and decomposition of H2O2into oxygen and water. On the hydroxylated surface, H2O2is first adsorbed by forming a favorable H-bond and then undergoes heterolytic dissociation, forming two hydroxyl groups at two vicinal Ce sites

    In Vivo Observation of Structural Changes in Neocortical Catecholaminergic Projections in Response to Drugs of Abuse

    Get PDF
    Catecholaminergic (dopamine and norepinephrine) projections to the cortex play an important role in cognitive functions and dysfunctions including learning, addiction, and mental disorders. While dynamics of glutamatergic synapses have been well studied in such contexts, little is known regarding catecholaminergic projections, owing to lack of robust methods. Here we report a system to monitor catecholaminergic projections in vivo over the timeframes that such events occur. Green fluorescent protein (GFP) expression driven by tyrosine hydroxylase promoter in a transgenic mouse line enabled us to perform two-photon imaging of cortical catecholaminergic projections through a cranial window. Repetitive imaging of the same axons over 24 h revealed the highly dynamic nature of catecholaminergic boutons. Surprisingly, administration of single high dose methamphetamine (MAP) induced a transient increase in bouton volumes. This new method opens avenues for longitudinal in vivo evaluation of structural changes at single release sites of catecholamines in association with physiology and pathology of cortical functions

    Kiso observations for 20 GRBs in HETE-2 era

    Get PDF
    We have established a GRB follow-up observation system at Kiso observatory (Japan) in 2001. Since the east Asian area had been blank for the GRB follow-up observational network, this observational system is very important in studying the temporal and spectral evolution of early afterglows. Using this system, we have performed quick observations for optical afterglows from early phase based on HETE-2 and INTEGRAL alerts. Thanks to the quick follow-up observation system, we have been able to use the Kiso observatory in 20 events, and conduct their follow-up observations in optical and near infrared wavelengths.Comment: 5 pages, 4 figure. Accepted for publication into "il nuovo cimento". Proceeding of the 4th Rome GRB conference, eds. L. Piro, L. Amati, S. Covino, B. Gendr

    Biasing crystallization in fused silica: An assessment of optimal metadynamics parameters

    Get PDF
    Metadynamics (MetaD) is a useful technique to study rare events such as crystallization. It has been only recently applied to study nucleation and crystallization in glass-forming liquids such as silicates, but the optimal set of parameters to drive crystallization and obtain converged free energy surfaces is still unexplored. In this work, we systematically investigated the effects of the simulation conditions to efficiently study the thermodynamics and mechanism of crystallization in highly viscous systems. As a prototype system, we used fused silica, which easily crystallizes to β-cristobalite through MetaD simulations, owing to its simple microstructure. We investigated the influence of the height, width, and bias factor used to define the biasing Gaussian potential, as well as the effects of the temperature and system size on the results. Among these parameters, the bias factor and temperature seem to be most effective in sampling the free energy landscape of melt to crystal transition and reaching convergence more quickly. We also demonstrate that the temperature rescaling from T > Tm is a reliable approach to recover free energy surfaces below Tm, provided that the temperature gap is below 600 K and the configurational space has been properly sampled. Finally, albeit a complete crystallization is hard to achieve with large simulation boxes, these can be reliably and effectively exploited to study the first stages of nucleation

    Suppression of backward scattering of Dirac fermions in iron pnictides Ba(Fe1−x_{1-x}Rux_xAs)2_2

    Full text link
    We report electronic transport of Dirac cones when Fe is replaced by Ru, which has an isoelectronic electron configuration to Fe, using single crystals of Ba(Fe1−x_{1-x}Rux_xAs)2_2. The electronic transport of parabolic bands is shown to be suppressed by scattering due to the crystal lattice distortion and the impurity effect of Ru, while that of the Dirac cone is not significantly reduced due to the intrinsic character of Dirac cones. It is clearly shown from magnetoresistance and Hall coefficient measurements that the inverse of average mobility, proportional to cyclotron effective mass, develops as the square root of the carrier number (n) of the Dirac cones. This is the unique character of the Dirac cone linear dispersion relationship. Scattering of Ru on the Dirac cones is discussed in terms of the estimated mean free path using experimental parameters.Comment: 6 pages, 3 figures, To be published in Phys. Rev.
    • …
    corecore