31 research outputs found

    Extratropical Large-Scale Traveling Weather Systems in the Southern Hemisphere on Mars

    Get PDF
    From late-autumn through early-spring, the middle- and high-latitudes of both hemispheres of Mars and its predominantly carbon-dioxide atmosphere support mean equator-to-pole thermal contrasts, and then, support a strong mean westerly polar vortex. Observations from orbiting spacecraft indicate that this intense mean baroclinicity-barotropicity supports large-scale eastward traveling weather systems (i.e., transient, traveling synoptic-period waves, on the order of the Rossby deformation scale). On Earth, extratropical weather disturbances arise from wind-shear instabilities, and these are critical components of the terrestrial global circulation. So it is the case for Mars. Large-scale traveling weather systems on Mars serve as agents in the transport of heat, momentum and scalar and tracer quantities (e.g., atmospheric dust, watervapor, ice clouds, chemical species, etc). Such weather systems interact with other large-scale atmospheric circulation components, namely, quasi-stationary (i.e., forced Rossby) modes; global thermal tidal modes; and then, upon large-/continental- geographical scales, upslope/ down-slope flows amongst high relief, low relief, impact basins, and volcanic rises, and more. The character of Mars' traveling extratropical weather disturbances in its southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (i.e., Mars GCM), and one from the Agency's Mars Climate Modeling Center (MCMC) based at the NASA Ames Research Center. The climate model includes several complex atmospheric physical packages. With such physics modules, our global climate simulations present comparatively well with observations of the planet's current water cycle (Haberle et al.,2019). The climate model is "forced" with an annual dust cycle (i.e., nudged based on MGS/TES observations). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented

    High-Resolution Modeling of the Dust and Water Cycles with the NASA Ames Mars Global Climate Model

    Get PDF
    NASAs Mars Climate Modeling Center at Ames Research Center is currently undergoing an exciting period of growth in personnel, modeling capabilities, and science productivity. We are transitioning from our legacy Arakawa C-grid finite-difference dynamical core to the NOAA/GFDL cubed-sphere finite-volume dynamical core for simulating the climate of Mars in a global framework. This highly parallelized core is scalable and flexible, which allows for significant improvements in the horizontal and vertical resolutions of our simulations. We have implemented the Ames water ice cloud microphysics package described in Haberle et al. (2018) into this new dynamical core. We will present high-resolution simulations of the dust and water cycles that show that sub-degree horizontal resolution improves the agreement between the vertical distribution of dust and water ice and observations. In particular, both water ice clouds and dust are transported to higher altitudes due to stronger topographic circulations at high resolution. Preliminary results suggest that high-resolution global modeling is needed to properly capture critical features of the dust and water cycles, and thus the current Mars climate

    Impact of the coagulation of dust particles on Mars during the 2018 global dust storm

    No full text
    International audienceCoagulation of particles occurs when two particles collide and stick together. In the Martian atmosphere, coagulation of dust would increase the dust effective particle size, as small particles accrete to larger particles. Murphy et al. (1990) concluded that Brownian coagulation of dust in the Martian atmosphere was not significant, due to the low dust particle mixing ratios, while Montmessin et al. (2002) and Fedorova et al. (2014) showed that it mostly involves dust particle radii smaller than 0.1 μm. However, the effects of coagulation have never been explored in 3D, during a global dust storm, and in presence of larger numbers of small particles. Here we revisit this issue by using the NASA Ames Mars Global Climate Model (MGCM) to investigate the temporal and spatial changes in dust particle sizes during the 2018 global dust storm due to dust coagulation and the overall impact of these processes on Mars' climate. Our parameterization for dust coagulation includes the effect of Brownian motion, Brownian diffusion enhancement, and gravitational collection. We show that Brownian motion and Brownian diffusion enhancement dominate gravitational collection. Coagulation has a significant impact during the global storm, with coagulation rates increased by a factor of 10 compared to non-storm conditions. The mean effective particle radius can be increased by a factor of up to 2 due to coagulation, leading to a 20 K colder atmosphere above 30 km altitude. Overall, our parameterization improves the representation of the decay phase of the storm relative to MCS dust observations. Coagulation also remains a significant process affecting dust outside the storm period if large numbers of submicron-sized particles are involved. As coagulation removes the small sub-micron particles within a relatively short time, it may therefore be possible, in GCMs, to lift larger amounts of submicron-sized particles from the surface without excess dust buildup in the atmosphere, thus improving the agreement with some of the observations without diverging from the observed column opacities

    Smad4-irf6 genetic interaction and TGFβ-mediated IRF6 signaling cascade are crucial for palatal fusion in mice

    No full text
    Cleft palate is one of the most common human birth defects and is associated with multiple genetic and environmental risk factors. Although mutations in the genes encoding transforming growth factor beta (TGFβ) signaling molecules and interferon regulatory factor 6 (Irf6) have been identified as genetic risk factors for cleft palate, little is known about the relationship between TGFβ signaling and IRF6 activity during palate formation. Here, we show that TGFβ signaling regulates expression of Irf6 and the fate of the medial edge epithelium (MEE) during palatal fusion in mice. Haploinsufficiency of Irf6 in mice with basal epithelial-specific deletion of the TGFβ signaling mediator Smad4 (Smad4(fl/fl);K14-Cre;Irf6(+/R84C)) results in compromised p21 expression and MEE persistence, similar to observations in Tgfbr2(fl/fl);K14-Cre mice, although the secondary palate of Irf6(+/R84C) and Smad4(fl/fl);K14-Cre mice form normally. Furthermore, Smad4(fl/fl);K14-Cre;Irf6(+/R84C) mice show extra digits that are consistent with abnormal toe and nail phenotypes in individuals with Van der Woude and popliteal pterygium syndromes, suggesting that the TGFβ/SMAD4/IRF6 signaling cascade might be a well-conserved mechanism in regulating multiple organogenesis. Strikingly, overexpression of Irf6 rescued p21 expression and MEE degeneration in Tgfbr2(fl/fl);K14-Cre mice. Thus, IRF6 and SMAD4 synergistically regulate the fate of the MEE, and TGFβ-mediated Irf6 activity is responsible for MEE degeneration during palatal fusion in mice

    Documentation of the NASA/Ames Legacy Mars Global Climate Model: Simulations of the present seasonal water cycle

    No full text
    International audienceWe describe and document the physics packages in the legacy NASA/Ames Mars Global Climate Model, present simulations of the seasonal water cycle and how it compares with observations, assess the role of radiatively active clouds on the water cycle and planetary eddies, and discuss the strengths and weakness of the model and the implication for future efforts. The physics packages we describe include the treatment of surface properties, the ground temperature model, planetary boundary layer scheme, sublimation physics, cloud microphysics, the use of a moment method for tracer transport, a semi-interactive dust tracking scheme, and a two-stream radiative transfer code based on correlated-k's. With virtually no tuning of the water cycle and assuming the north polar residual water ice cap is the only source of water we find the model gives a reasonably good simulation of the present seasonal water cycle. No persistent clouds form over the residual cap, seasonal variations in column vapor abundances are similar to those observed, the aphelion cloud belt has about the right opacity, and surface and air temperatures are in reasonably good agreement with observations. The radiative effect of clouds does not significantly alter the seasonal and spatial variation of the moisture fields, though the clouds are thicker and the atmosphere somewhat wetter. As others have found cloud radiative forcing amplifies the mean meridional circulation, transient baroclinic eddies, and global thermal tides. However, it also changes the characteristics of forced stationary waves in ways that are not straightforward to understand. The main weakness of the model, we believe, is sluggish vertical mixing. Water is not transported high enough in the model and as a consequence the water cycle is too dry, the aphelion cloud belt is too low, and the mean meridional circulation is too shallow. These, we feel, could be remedied by some combination of non-local mixing, deep mountain-induced circulations, better horizontal and vertical resolution, and/or gravity wave drag. Efforts are now underway to study these issues as we are transitioning away from our legacy code to one with a more modern dynamical core
    corecore