27 research outputs found

    Special Section on Epigenetic Regulation of Drug Metabolizing Enzymes and Transporters Insights into Insulin-Mediated Regulation of CYP2E1: miR-132/-212 Targeting of CYP2E1 and Role of Phosphatidylinositol 3-Kinase, Akt (Protein Kinase B), Mammalian Targe

    Get PDF
    ABSTRACT Several microRNAs (miRNAs) were selected for characterization of their response to insulin signaling based on in silico predictions of targeting CYP2E1 mRNA and previous reports implicating their role in hepatic metabolism and disease. CYP2E1 expression decreases with increasing insulin concentration and has been shown to be regulated by the phosphatidylinositol 3-kinase (PI3-K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. In primary cultured rat hepatocytes, insulin at 0.1, 1.0, and 10 nM elevated miRNA-132 and -212 expression ∼2-and 1.8-fold, respectively, whereas expression of miRNA-181a and -122 increased ∼1.6-and 1.4-fold, respectively. In contrast, insulin failed to alter significantly the expression of miRNA let-7a. Mechanistic studies using inhibitors of PI3-K, Akt, and mTOR were used to examine the role of the insulin signaling pathway on miR expression and resulted in significant suppression of the insulin-mediated elevation of miR-132, miR-212, and miR-122 levels, with a lesser effect observed for miR-181a. Targeting of the rat CYP2E1 39-untranslated region (UTR) by miR-132 and -212 was demonstrated with an in vitro luciferase reporter assay. These data show that insulin, which regulates CYP2E1 through the PI3-K, Akt, mTOR signaling pathway, also regulates the expression of miRs that target the 39-UTR of CYP 2E1 mRNA and are involved in the regulation of hepatic metabolism and disease

    Virus-like particles derived from Pichia pastoris-expressed dengue virus type 1 glycoprotein elicit homotypic virus-neutralizing envelope domain III-directed antibodies

    Get PDF
    Background: Four antigenically distinct serotypes (1–4) of Dengue Viruses (DENVs) cause dengue disease. Antibodies to any one DENV serotype have the potential to predispose an individual to more severe disease upon infection with a different DENV serotype. A dengue vaccine must elicit homotypic neutralizing antibodies to all four DENV serotypes to avoid the risk of such antibody-dependent enhancement in the vaccine recipient. This is a formidable challenge as evident from the lack of protective efficacy against DENV-2 by a tetravalent live attenuated dengue vaccine that has completed phase III trials recently. These trial data underscore the need to explore non-replicating subunit vaccine alternatives. Recently, using the methylotrophic yeast Pichia pastoris, we showed that DENV-2 and DENV-3 envelope (E) glycoproteins, expressed in absence of prM, implicated in causing severe dengue disease, self-assemble into Virus-like Particles (VLPs), which elicit predominantly virus-neutralizing antibodies and confer significant protection against lethal DENV challenge in an animal model. The current study extends this work to a third DENV serotype. Results: We cloned and expressed DENV-1 E antigen in P. pastoris and purified it to near homogeneity. Recombinant DENV-1 E underwent post-translational processing, namely, signal peptide cleavage and glycosylation. Purified DENV-1 E self-assembled into stable VLPs, based on electron microscopy and dynamic light scattering analysis. Epitope mapping with monoclonal antibodies revealed that the VLPs retained the overall antigenic integrity of the virion particles despite the absence of prM. Subtle changes accompanied the efficient display of E domain III (EDIII), which contains type-specific neutralizing epitopes. These VLPs were immunogenic, eliciting predominantly homotypic EDIII-directed DENV-1-specific neutralizing antibodies. Conclusions: This work demonstrates the inherent potential of P. pastoris-expressed DENV-1 E glycoprotein to self-assemble into VLPs eliciting predominantly homotypic neutralizing antibodies. This work justifies an investigation of the last remaining serotype, namely, DENV-4, to assess if it also shares the desirable vaccine potential manifested by the remaining three DENV serotypes. Such efforts could make it possible to envisage the development of a tetravalent dengue vaccine based on VLPs of P. pastoris-expressed E glycoproteins of the four DENV serotypes

    Not Available

    No full text
    Not AvailableWith the development of agro-based industry in India, the production of wastes from these industries increased rapidly by quantity as well as by variety. These industries produce large volume of waste, resulting from the production, preparation and consumption of food. Pea processing industry involves preserving green peas by freezing and marketing them for seasonal limitation and producing a very high amount of waste as a by-product. Inappropriate disposal of this waste not only results in environmental degradation and pollution, but also loss of valuable biomass resources. The present study was aimed to estimate the nutritional value of waste pea peels and to utilize them for developing bio-degradable product through value addition in an efficient way. The result revealed that waste pea peels have high nutritive value of crude protein (19.79%), and have a good amount of ash (7.87%), fat (2.27%) and fiber (1.84%). The biofilm developed under this study has good tensile strength (5.96 MPa), thickness (70 μm) and water solubility (2.46%). Therefore bio-film can be a substitute of synthetic plastic with the advantage of employment generation, energy recovery and livelihood security which would ultimately lead to sustainable development.Not Availabl

    Recombinant dengue virus 4 envelope glycoprotein Virus-like Particles derived from pichia pastoris are capable of eliciting homotypic domain III-directed neutralizing antibodies

    No full text
    Dengue is a viral pandemic caused by four dengue virus serotypes (DENV-1, 2, 3, and 4) transmitted by Aedes mosquitoes. Reportedly, there has been a 2-fold increase in dengue cases every decade. An efficacious tetravalent vaccine, which can provide long-term immunity against all four serotypes in all target populations, is still unavailable. Despite the progress being made in the live virus-based dengue vaccines, the World Health Organization strongly recommends the development of alternative approaches for safe, affordable, and efficacious dengue vaccine candidates. We have explored Virus-like Particles (VLPs)-based nonreplicating subunit vaccine approach and have developed recombinant envelope ectodomains of DENV-1, 2, and 3 expressed in Pichia pastoris. These self-assembled into VLPs without pre-Membrane (prM) protein, which limits the generation of enhancing antibodies, and elicited type-specific neutralizing antibodies against the respective serotype. Encouraged by these results, we have extended this work further by developing P. pastoris–expressed DENV-4 ectodomain (DENV-4 E) in this study, which was found to be glycosylated and assembled into spherical VLPs without prM, and displayed critical neutralizing epitopes on its surface. These VLPs were found to be immunogenic in mice and elicited DENV-4-specific neutralizing antibodies, which were predominantly directed against envelope domain III, implicated in host-receptor recognition and virus entry. These observations underscore the potential of VLP-based nonreplicative vaccine approach as a means to develop a safe, efficacious, and tetravalent dengue subunit vaccine. This work paves the way for the evaluation of a DENV E-based tetravalent dengue vaccine candidate, as an alternative to live virus-based dengue vaccines

    Pichia pastoris-Expressed Bivalent Virus-Like Particulate Vaccine Induces Domain III-Focused Bivalent Neutralizing Antibodies without Antibody-Dependent Enhancement in Vivo

    No full text
    Dengue, a significant public health problem in several countries around the world, is caused by four different serotypes of mosquito-borne dengue viruses (DENV-1, -2, -3, and -4). Antibodies to any one DENV serotype which can protect against homotypic re-infection, do not offer heterotypic cross-protection. In fact, cross-reactive antibodies may augment heterotypic DENV infection through antibody-dependent enhancement (ADE). A recently launched live attenuated vaccine (LAV) for dengue, which consists of a mixture of four chimeric yellow-fever/dengue vaccine viruses, may be linked to the induction of disease-enhancing antibodies. This is likely related to viral interference among the replicating viral strains, resulting in an unbalanced immune response, as well as to the fact that the LAV encodes prM, a DENV protein documented to elicit ADE-mediating antibodies. This makes it imperative to explore the feasibility of alternate ADE risk-free vaccine candidates. Our quest for a non-replicating vaccine centered on the DENV envelope (E) protein which mediates virus entry into the host cell and serves as an important target of the immune response. Serotype-specific neutralizing epitopes and the host receptor recognition function map to E domain III (EDIII). Recently, we found that Pichia pastoris-expressed DENV E protein, of all four serotypes, self-assembled into virus-like particles (VLPs) in the absence of prM. Significantly, these VLPs displayed EDIII and elicited EDIII-focused DENV-neutralizing antibodies in mice. We now report the creation and characterization of a novel non-replicating recombinant particulate vaccine candidate, produced by co-expressing the E proteins of DENV-1 and DENV-2 in P. pastoris. The two E proteins co-assembled into bivalent mosaic VLPs (mVLPs) designated as mE1E2bv VLPs. The mVLP, which preserved the serotype-specific antigenic integrity of its two component proteins, elicited predominantly EDIII-focused homotypic virus-neutralizing antibodies in BALB/c mice, demonstrating its efficacy. In an in vivo ADE model, mE1E2bv VLP-induced antibodies lacked discernible ADE potential, compared to the cross-reactive monoclonal antibody 4G2, as evidenced by significant reduction in the levels of IL-6 and TNF-α, suggesting inherent safety. The results obtained with these bivalent mVLPs suggest the feasibility of incorporating the E proteins of DENV-3 and DENV-4 to create a tetravalent mVLP vaccine
    corecore