8 research outputs found

    Razvoj i vrednovanje dvoslojnih tableta propranolol hidroklorida

    Get PDF
    The objective of the present research was to develop a bilayer tablet of propranolol hydrochloride using superdisintegrant sodium starch glycolate for the fast release layer and water immiscible polymers such as ethyl cellulose, Eudragit RLPO and Eudragit RSPO for the sustaining layer. In vitro dissolution studies were carried out in a USP 24 apparatus I. The formulations gave an initial burst effect to provide the loading dose of the drug followed by sustained release for 12 hrs from the sustaining layer of matrix embedded tablets. In vitro dissolution kinetics followed the Higuchi model via a non-Fickian diffusion controlled release mechanism after the initial burst release. FT-IR studies revealed that there was no interaction between the drug and polymers used in the study. Statistical analysis (ANOVA) showed no significant difference in the cumulative amount of drug release after 15 min, but significant difference (p 0.005) in the amount of drug released after 12 h from optimized formulations was observed.U radu je opisan razvoj dvoslojnih tableta propranolol hidroklorida, koristeći superdezintegrator ơkrob glikolat natrij u sloju za brzo oslobađanje i polimere koji se ne mijeơaju s vodom (etil celuloza, Eudragit RLPO i Eudragit RSPO) u sloju za usporeno oslobađanje. In vitro oslobađanje praćeno je u USP aparatu I te je uočeno početno naglo oslobađanje ljekovite tvari iza kojeg slijedi polagano oslobađanje tijekom 12 sati. In vitro kinetika oslobađanja prati Higouchijev model, dok mehanizam kontroliranog oslobađanja ne slijedi Fickov zakon poslije početnog naglog oslobađanja. FT-IR studije ukazuju da nema interakcije između ljekovite tvari i polimera upotrebljenih u oblikovanju. Statistička analiza (ANOVA) nije pokazala značajne razlike u kumulativnoj količini oslobođenog lijeka iz optimiranih formulacija poslije 15 minuta i polije 12 h

    Wet granulation fine particle ethylcellulose tablets: Effect of production variables and mathematical modeling of drug release

    No full text
    In the present study, the applicability of fine particle ethylcellulose (FPEC) to produce matrix tablets by a wet granulation technique was evaluated. The effect of various formulation and process variables, such as FPEC content, hardness of the tablet, and solubility of the drug, on the release of drug from these tablets was examined. Tablets were prepared by wet granulation of drug and FPEC in an appropriate mass ratio. Theophylline, caffeine, and dyphylline were selected as nonionizable model drugs with solubilities from 8.3 to 330 mg/mL at 25°C. Ibuprofen, phenylpropanolamine hydrochloride, and pseudoephedrine hydrochloride were selected as ionizable drugs with solubilities from 0.1 to 2000 mg/mL at 25°C. Drug release studies were conducted in 37°C water with UV detection. As the FPEC content and the hardness of the tablets increased, the release rate of the drug decreased. The drug release rate increased with an increase in the solubility of the drug. Model equations, intended to elucidate the drug release mechanism, were fitted to the release data. Parameters were generated and data presented by SAS software. The Akaike Information Criterion was also considered to ascertain the best-fit equation. Fickian diffusion and polymer relaxation were the release mechanisms for nonionizable and ionizable drugs

    Guar Gum, Xanthan Gum, and HPMC Can Define Release Mechanisms and Sustain Release of Propranolol Hydrochloride

    No full text
    The objectives were to characterize propranolol hydrochloride-loaded matrix tablets using guar gum, xanthan gum, and hydroxypropylmethylcellulose (HPMC) as rate-retarding polymers. Tablets were prepared by wet granulation using these polymers alone and in combination, and physical properties of the granules and tablets were studied. Drug release was evaluated in simulated gastric and intestinal media. Rugged tablets with appropriate physical properties were obtained. Empirical and semi-empirical models were fit to release data to elucidate release mechanisms. Guar gum alone was unable to control drug release until a 1:3 drug/gum ratio, where the release pattern matched a Higuchi profile. Matrix tablets incorporating HPMC provided near zero-order release over 12 h and erosion was a contributing mechanism. Combinations of HPMC with guar or xanthan gum resulted in a Higuchi release profile, revealing the dominance of the high viscosity gel formed by HPMC. As the single rate-retarding polymer, xanthan gum retarded release over 24 h and the Higuchi model best fit the data. When mixed with guar gum, at 10% or 20% xanthan levels, xanthan gum was unable to control release. However, tablets containing 30% guar gum and 30% xanthan gum behaved as if xanthan gum was the sole rate-retarding gum and drug was released by Fickian diffusion. Release profiles from certain tablets match 12-h literature profiles and the 24-h profile of InderalŸ LA. The results confirm that guar gum, xanthan gum, and HPMC can be used for the successful preparation of sustained release oral propranolol hydrochoride tablets

    Chitosan‐based

    No full text

    Chitosan-based Polymer Matrix for Pharmaceutical Excipients and Drug Delivery

    No full text
    corecore