51 research outputs found

    What Happened if Dirac, Sciama and Dicke had Talked to Each Other About Cosmology?

    Get PDF
    The inspiring contributions to cosmology originating from the above named researchers seem abandoned today. Surprisingly, their basic ideas can be realized by slight modifications of each proposal. We study Dirac's article on the large number hypothesis (1938), Sciama's proposal of realizing Mach's principle (1953), and Dicke's scalar theory of gravitation with a variable speed of light (1957). Dicke's tentative theory can be formulated in a way which is compatible with Sciama's hypothesis on the gravitational constant G. Additionally, such a cosmological model satisfies Dirac's large number hypothesis (LNH) without entailing a visible time dependence of G which never has been verified, though originally predicted by Dirac. While Dicke's proposal in first approximation agrees with the classical tests of GR, the cosmological redshift arises from a shortening of measuring rods rather than an expansion of space. The speed of light turns out to be the increase of the horizon R. A related discussion is given in arxiv:0708.3518

    A gauge theoretic approach to elasticity with microrotations

    Full text link
    We formulate elasticity theory with microrotations using the framework of gauge theories, which has been developed and successfully applied in various areas of gravitation and cosmology. Following this approach, we demonstrate the existence of particle-like solutions. Mathematically this is due to the fact that our equations of motion are of Sine-Gordon type and thus have soliton type solutions. Similar to Skyrmions and Kinks in classical field theory, we can show explicitly that these solutions have a topological origin.Comment: 15 pages, 1 figure; revised and extended version, one extra page; revised and extended versio

    Notes on f(T)f(T) Theories

    Full text link
    The cosmological models based on teleparallel gravity with nonzero torsion are considered. To investigate the evolution of this theory, we consider the phase-space analysis of the f(T)f(T) theory. It shows when the tension scalar can be written as an inverse function of xx where x=ρe/(3mpl2H2)x=\rho_{e}/(3m_{pl}^{2}H^{2}) and T=g(x)T=g(x), the system is an autonomous one. Furthermore,the ωeωe\omega_{e}-\omega'_{e} phase analysis is given out. We perform the dynamical analysis for the models f(T)=βTln(T/T0)f(T)=\beta T\ln(T/T_{0}) and f(T)=αmpl2(T/mpl2)nf(T)=\alpha m_{pl}^{2}(-T/m_{pl}^{2})^{n} particularly. We find that the universe will settle into de-Sitter phase for both models. And we have examined the evolution behavior of the power law form in the ωepωep\omega_{ep}-\omega'_{ep} plane.Comment: 13 pages, 2 figure

    Observational Constraints on Teleparallel Dark Energy

    Full text link
    We use data from Type Ia Supernovae (SNIa), Baryon Acoustic Oscillations (BAO), and Cosmic Microwave Background (CMB) observations to constrain the recently proposed teleparallel dark energy scenario based on the teleparallel equivalent of General Relativity, in which one adds a canonical scalar field, allowing also for a nonminimal coupling with gravity. Using the power-law, the exponential and the inverse hyperbolic cosine potential ansatzes, we show that the scenario is compatible with observations. In particular, the data favor a nonminimal coupling, and although the scalar field is canonical the model can describe both the quintessence and phantom regimes.Comment: 19 pages, 6 figures, version accepted by JCA

    Phase-Space analysis of Teleparallel Dark Energy

    Full text link
    We perform a detailed dynamical analysis of the teleparallel dark energy scenario, which is based on the teleparallel equivalent of General Relativity, in which one adds a canonical scalar field, allowing also for a nonminimal coupling with gravity. We find that the universe can result in the quintessence-like, dark-energy-dominated solution, or to the stiff dark-energy late-time attractor, similarly to standard quintessence. However, teleparallel dark energy possesses an additional late-time solution, in which dark energy behaves like a cosmological constant, independently of the specific values of the model parameters. Finally, during the evolution the dark energy equation-of-state parameter can be either above or below -1, offering a good description for its observed dynamical behavior and its stabilization close to the cosmological-constant value.Comment: 23 pages, 4 figures, 5 tables, version published at JCA

    On the gravitodynamics of moving bodies

    Full text link
    In the present work we propose a generalization of Newton's gravitational theory from the original works of Heaviside and Sciama, that takes into account both approaches, and accomplishes the same result in a simpler way than the standard cosmological approach. The established formulation describes the local gravitational field related to the observables and effectively implements the Mach's principle in a quantitative form that retakes Dirac's large number hypothesis. As a consequence of the equivalence principle and the application of this formulation to the observable universe, we obtain, as an immediate result, a value of Omega = 2. We construct a dynamic model for a galaxy without dark matter, which fits well with recent observational data, in terms of a variable effective inertial mass that reflects the present dynamic state of the universe and that replicates from first principles, the phenomenology proposed in MOND. The remarkable aspect of these results is the connection of the effect dubbed dark matter with the dark energy field, which makes it possible for us to interpret it as longitudinal gravitational waves.Comment: 18 pages, 4 figures. Final version: almost identical to the reference journal; Cent. Eur. J. Phys. 201

    Maximal symmetry and metric-affine f(R) gravity

    Full text link
    The affine connection in a space-time with a maximally symmetric spatial subspace is derived using the properties of maximally symmetric tensors. The number of degrees of freedom in metric-affine gravity is thereby considerably reduced while the theory allows spatio-temporal torsion and remains non-metric. The Ricci tensor and scalar are calculated in terms of the connection and the field equations derived for the Einstein-Hilbert as wells as for f(R) Lagrangians. By considering specific forms of f(R), we demonstrate that the resulting Friedmann equations in Palatini formalism without torsion and metric-affine formalism with maximal symmetry are in general different in the presence of matter.Comment: 7 page
    corecore