105 research outputs found

    All Sky Survey Mission Observing Scenario Strategy

    Get PDF
    This paper develops a general observing strategy for missions performing all-sky surveys, where a single spacecraft maps the celestial sphere subject to realistic constraints. The strategy is flexible such that targeted observations and variable coverage requirements can be achieved. This paper focuses on missions operating in Low Earth Orbit, where the thermal and stray-light constraints due to the Sun, Earth, and Moon result in interacting and dynamic constraints. The approach is applicable to broader mission classes, such as those that operate in different orbits or that survey the Earth. First, the instrument and spacecraft configuration is optimized to enable visibility of the targeted observations throughout the year. Second, a constraint-based high-level strategy is presented for scheduling throughout the year subject to a simplified subset of the constraints. Third, a heuristic-based scheduling algorithm is developed to assign the all-sky observations over short planning horizons. The constraint-based approach guarantees solution feasibility. The approach is applied to the proposed SPHEREx mission, which includes coverage of the North and South Celestial Poles, Galactic plane, and a uniform coverage all-sky survey, and the ability to achieve science requirements demonstrated and visualized. Visualizations demonstrate the how the all-sky survey achieves its objectives

    Astrometric Detection of Terrestrial Planets in the Habitable Zones of Nearby Stars with SIM PlanetQuest

    Full text link
    SIM PlanetQuest (Space Interferometry Mission) is a space-borne Michelson interferometer for precision stellar astrometry, with a nine meter baseline, currently slated for launch in 2015. One of the principal science goals is the astrometric detection and orbit characterization of terrestrial planets in the habitable zones of nearby stars. Differential astrometry of the target star against a set of reference stars lying within a degree will allow measurement of the target star's reflex motion with astrometric accuracy of 1 micro-arcsecond in a single measurement. We assess SIM's capability for detection (as opposed to characterization by orbit determination) of terrestrial planets in the habitable zones of nearby solar-type stars. We compare SIM's performance on target lists optimized for the SIM and Terrestrial Planet Finder Coronograph (TPF-C) missions. Performance is quantified by three metrics: minimum detectable planet mass, number and mass distribution of detected planets, and completeness of detections in each mass range. Finally, we discuss the issue of confidence in detections and non-detections, and show how information from SIM's planet survey can enable TPF to increase its yield of terrestrial planets.Comment: Minor corrections to figures and tables. 46 pages, 27 figures. To appear in PASP (Publications of the Astronomical Society of the Pacific), May 200

    Finding Earth clones with SIM: The most promising near-term technique to detect, find masses for, and determine three-dimensional orbits of nearby habitable planets

    Get PDF
    SIM is a space astrometric interferometer capable of better than one-microarcsecond (µas) single measurement accuracy, providing the capability to detect stellar "wobble" resulting from planets in orbit around nearby stars. While a search for exoplanets can be optimized in a variety of ways, a SIM five-year search optimized to detect Earth analogs (0.3 to 10 Earth masses) in the middle of the habitable zone (HZ) of nearby stars would yield the masses, without M*sin(i) ambiguity, and three-dimensional orbital parameters for planets around ~70 stars, including those in the HZ and further away from those same stars. With >200 known planets outside our solar system, astrophysical theorists have built numerical models of planet formation that match the distribution of Jovian planets discovered to date and those models predict that the number of terrestrial planets (< 10 M_⊕) would far exceed the number of more massive Jovian planets. Even so, not every star will have an Earth analog in the middle of its HZ. This paper describes the relationship between SIM and other planet detection methods, the SIM planet observing program, expected results, and the state of technical readiness for the SIM mission

    State-of-the-art VLBI imaging: 3C345

    Get PDF
    Most VLBI images have low dynamic range because they are limited by instrumental effects such as calibration errors and poor u, v-coverage. We outline the method used to make a new image of the bright quasar 3C345 which has very high dynamic range (peak-to-noise of 5000:1) and which is limited by the thermal noise, not instrumental errors. Both the Caltech VLBI package and the NRAO AIPS package were required to manipulate the data

    The pathophysiology of distal renal tubular acidosis

    Get PDF
    The kidneys have a central role in the control of acid-base homeostasis owing to bicarbonate reabsorption and production of ammonia and ammonium in the proximal tubule and active acid secretion along the collecting duct. Impaired acid excretion by the collecting duct system causes distal renal tubular acidosis (dRTA), which is characterized by the failure to acidify urine below pH 5.5. This defect originates from reduced function of acid-secretory type A intercalated cells. Inherited forms of dRTA are caused by variants in SLC4A1, ATP6V1B1, ATP6V0A4, FOXI1, WDR72 and probably in other genes that are yet to be discovered. Inheritance of dRTA follows autosomal-dominant and -recessive patterns. Acquired forms of dRTA are caused by various types of autoimmune diseases or adverse effects of some drugs. Incomplete dRTA is frequently found in patients with and without kidney stone disease. These patients fail to appropriately acidify their urine when challenged, suggesting that incomplete dRTA may represent an intermediate state in the spectrum of the ability to excrete acids. Unrecognized or insufficiently treated dRTA can cause rickets and failure to thrive in children, osteomalacia in adults, nephrolithiasis and nephrocalcinosis. Electrolyte disorders are also often present and poorly controlled dRTA can increase the risk of developing chronic kidney disease
    • …
    corecore