251 research outputs found

    Substantial and sustained improvements in blood pressure, weight and lipid profiles from a carbohydrate restricted diet: an observational study of insulin resistant patients in primary care

    Get PDF
    Hypertension is the second biggest known global risk factor for disease after poor diet; perhaps lifestyle interventions are underutilized? In a previous small pilot study, it was found that a low carbohydrate diet was associated with significant improvements in blood pressure, weight, ‘deprescribing’ of medications and lipid profiles. We were interested to investigate if these results would be replicated in a larger study based in ‘real world’ GP practice. 154 patients with type 2 diabetes or impaired glucose tolerance were recruited into an observational cohort study in primary care. The effects of a low carbohydrate diet sustained for an average of two years (interquartile range 10–32 months) on cardiovascular risk factors were examined. Results demonstrate significant and substantial reductions in blood pressure (mean reduction of systolic BP 10.9 mmHg (interquartile range 0–22 mmHg) (p < 0.0001), mean reduction in diastolic BP 6.3 mmHg (interquartile range 0–12.8 mmHg) (p < 0.0001) and mean weight reduction of 9.5 Kg (interquartile range 5–13 Kg) (p < 0.0001) together with marked improvement in lipid profiles. This occurred despite a 20% reduction in anti-hypertensive medications. This novel and potentially highly effective dietary modification, done very cheaply alongside routine care, offers hope that should be tested in a large prospective trial

    Surface patterning of polyacrylamide gel using scanning electrochemical cell microscopy (SECCM)

    Get PDF
    Scanning electrochemical cell microscopy is introduced as a new tool for the synthesis and deposition of polymers on SAM-functionalised Au surfaces. The deposition of poly(N-hydroxyethyl acrylamide) is shown to be enhanced through the electrochemical generation of activating Cu(I)Cl/Me6TREN catalyst. Initiation of the polymerisation reaction is most likely due to in situ generation of reactive oxygen species following oxygen reduction

    Facet-resolved electrochemistry of polycrystalline boron-doped diamond electrodes : microscopic factors determining the aqueous solvent window in aqueous potassium chloride solutions

    Get PDF
    A systematic examination of the microscopic factors affecting the aqueous solvent (electrolyte) window of polycrystalline (p) boron-doped diamond (BDD) electrodes in chloride-containing salt solutions is undertaken using scanning electrochemical cell microscopy (SECCM), in conjunction with electron backscatter diffraction (EBSD) and Raman microscopy. A major focus is to determine the effect of local boron doping level, within the same orientation grains, on the solvent window response. EBSD is used to select the predominant (110) orientated areas of the surface with different boron-doped facets, thereby eliminating crystallographic effects from the electrochemical response. Voltammetric SECCM is employed, whereby a cyclic voltammogram (CV) is recorded at each pixel mapped by the meniscus-contact SECCM cell. The data obtained can be played as an electrochemical movie of potential-resolved current maps of the surface to reveal spatial variations of electroactivity, over a wide potential range, including the solvent (electrolyte) window. Local heterogeneities are observed, indicating that the solvent window is mainly linked to local dopant levels, with lower dopant levels leading to a wider window, i.e. slower electrode kinetics for solvent/electrolyte electrolysis. Furthermore, the effects of O- and H-surface termination of the BDD surface are investigated, for the same electrode (in the same area). The surface termination is a particularly important factor: the solvent window of an H-terminated surface is wider than for O-termination for similar boron dopant levels. Further, the anodic potential window of the O-terminated surface is greatly diminished due to chloride electro-oxidation. These studies provide new perspectives on the local electrochemical properties of BDD and highlight the importance of probing the electrochemistry of BDD at the level of a single crystalline grain (facet) in order to unravel the factors that control the solvent (aqueous) window of these complex heterogeneous electrodes

    Electrochemical characterization and regeneration of sulfur poisoned Pt catalysts in aqueous media

    Get PDF
    Understanding the poisoning and recovery of precious metal catalysts is greatly relevant for the chemical industry dealing with the synthesis of organic compounds. For example, hydrogenation reactions typically use platinum catalysts and sulfuric acid media, leading to poisoning by sulfur-containing species. In this work, we have applied electrochemical methods to understand the status and recovery of Pt catalysts by studying the electro-oxidation of a family of sulfur-containing species adsorbed at several types of Pt electrodes: (i) polycrystalline Pt foil; (ii) Pt single-crystal electrodes; and (iii) Pt nanoparticles supported on Vulcan carbon. The results obtained from polycrystalline Pt electrodes and Pt nanoparticles supported on Vulcan carbon demonstrate that all sulfur-containing species with different oxidation states (2-, 3+ and 4+) lead to the poisoning of Pt active sites. X-ray photoelectron spectroscopy (XPS) analysis was employed to elucidate the chemical state of sulfur species during the recovery process. The degree of poisoning decreased with increased sulfur oxidation state, while the rate of regeneration of the Pt surfaces generally increases with the oxidation state of the sulfur species. Finally, the use of Pt single-crystal electrodes reveals the surface-structure sensitivity of the oxidation of the sulfur species. This information could be useful in designing catalysts that are less susceptible to poisoning and/or more easily regenerated. These studies demonstrate voltammetry to be a powerful method for assessing the status of platinum surfaces and for recovering catalyst activity, such that electrochemical methods could find applications as sensors in catalysis and for catalyst recovery in-situ

    Moebius strip enterprises and expertise in the creative industries: new challenges for lifelong learning?

    Get PDF
    The paper argues that the emergence of a new mode of production – co-configuration is generating new modes of expertise that EU policies for lifelong learning are not designed to support professionals to develop. It maintains that this change can be seen most clearly when we analyse Small and Medium Size (SMEs) enterprises in the creative industries. Drawing on concepts from Political Economy - ‘Moebius strip enterprise/expertise’ and Cultural Historical Activity Theory - project-object’ and the ‘space of reasons’, the paper highlights conceptually and through a case study of an SME in the creative industries what is distinctive about the new modes of expertise, before moving on to reconceptualise expertise and learning and to consider the implications of this reconceptualisation for EU policies for lifelong learning. The paper concludes that the new challenge for LLL is to support the development of new forms expertise that are difficult to credentialise, yet, are central to the wider European goal of realising a knowledge economy

    Taking the Measure of the Universe: Precision Astrometry with SIM PlanetQuest

    Get PDF
    Precision astrometry at microarcsecond accuracy has application to a wide range of astrophysical problems. This paper is a study of the science questions that can be addressed using an instrument that delivers parallaxes at about 4 microarcsec on targets as faint as V = 20, differential accuracy of 0.6 microarcsec on bright targets, and with flexible scheduling. The science topics are drawn primarily from the Team Key Projects, selected in 2000, for the Space Interferometry Mission PlanetQuest (SIM PlanetQuest). We use the capabilities of this mission to illustrate the importance of the next level of astrometric precision in modern astrophysics. SIM PlanetQuest is currently in the detailed design phase, having completed all of the enabling technologies needed for the flight instrument in 2005. It will be the first space-based long baseline Michelson interferometer designed for precision astrometry. SIM will contribute strongly to many astronomical fields including stellar and galactic astrophysics, planetary systems around nearby stars, and the study of quasar and AGN nuclei. SIM will search for planets with masses as small as an Earth orbiting in the `habitable zone' around the nearest stars using differential astrometry, and could discover many dozen if Earth-like planets are common. It will be the most capable instrument for detecting planets around young stars, thereby providing insights into how planetary systems are born and how they evolve with time. SIM will observe significant numbers of very high- and low-mass stars, providing stellar masses to 1%, the accuracy needed to challenge physical models. Using precision proper motion measurements, SIM will probe the galactic mass distribution and the formation and evolution of the Galactic halo. (abridged)Comment: 54 pages, 28 figures, uses emulateapj. Submitted to PAS

    The Mass and Structure of the Pleiades Star Cluster from 2MASS

    Get PDF
    We present the results of a large scale search for new members of the Pleiades star cluster using 2MASS near-infrared photometry and proper motions derived from POSS plates digitized by the USNO PMM program. The search extends to a 10 degree radius around the cluster, well beyond the presumed tidal radius, to a limiting magnitude of R ~ 20, corresponding to ~ 0.07 M_sun at the distance and age of the Pleiades. Multi-object spectroscopy for 528 candidates verifies that the search was extremely effective at detecting cluster stars in the 1 - 0.1 M_sun mass range using the distribution of H_alpha emission strengths as an estimate of sample contamination by field stars. When combined with previously identified, higher mass stars, this search provides a sensitive measurement of the stellar mass function and dynamical structure of the Pleiades. The degree of tidal elongation of the halo agrees well with current N body simulation results. Tidal truncation affects masses below ~ 1 M_sun. The cluster contains a total mass ~ 800 M_sun. Evidence for a flatter mass function in the core than in the halo indicates the depletion of stars in the core with mass less than ~ 0.5 M_sun, relative to stars with mass \~1 - 0.5 M_sun, and implies a preference for very low mass objects to populate the halo or escape. The overall mass function is best fitted with a lognormal form that becomes flat at ~ 0.1 M_sun. Whether sufficient dynamical evaporation has occurred to detectably flatten the initial mass function, via preferential escape of very low mass stars and brown dwarfs, is undetermined, pending better membership information for stars at large radial distances.Comment: 19 pages, 14 figures, 2 tables, accepted by AJ, to appear April 200
    • …
    corecore