86 research outputs found

    Response to 225Ac-PSMA-I&T after failure of long-term 177Lu-PSMA RLT in mCRPC

    Get PDF
    Purpose!#!With the spread of transjugular intrahepatic portosystemic shunts (TIPS), portosystemic shunt surgery (PSSS) has decreased and leaves more complex patients with great demands for accurate preoperative planning. The aim was to evaluate the role of imaging for predicting the most suitable PSSS approach.!##!Material and methods!#!Forty-four patients who underwent PSSS (2002 to 2013) were examined by contrast-enhanced CT (n = 33) and/or MRI (n = 15) prior to surgery. Imaging was analyzed independently by two observers (O1 and O2) with different levels of experience (O1 > O2). They recommended two shunting techniques (vessels and anastomotic variant) for each patient and ranked them according to their appropriateness and complexity. Findings were compared with the actually performed shunt procedure and its outcome.!##!Results!#!The first two choices taken together covered the performed PSSS regarding vessels in 88%/100% (CT/MRI, O1) and 76%/73% (O2); and vessels + anastomosis in 79%/73% (O1) and 67%/60% (O2). The prediction of complex surgical procedures (resection of interposing structures, additional thrombectomy, use of a collateral vessel, and use of a graft interposition) was confirmed in 87%, resulting in 80% sensitivity and 96% specificity. Larger shunt vessel distances were associated with therapy failure (p = 0.030) and a vessel distance of ≥ 20 mm was identified as optimal cutoff, in which a graft interposition was used. There was no significant difference between MRI and CT in predicting the intraoperative decisions (p = 0.294 to 1.000).!##!Conclusion!#!Preoperative imaging and an experienced radiologist can guide surgeons in PSSS. CT and MRI provide the information necessary to identify technically feasible variants and complicating factors

    Transformation of diffuse large B cell lymphoma into dendritic sarcoma under CAR T cell therapy detected on 18F-FDG PET/CT

    Get PDF
    Purpose!#!With the spread of transjugular intrahepatic portosystemic shunts (TIPS), portosystemic shunt surgery (PSSS) has decreased and leaves more complex patients with great demands for accurate preoperative planning. The aim was to evaluate the role of imaging for predicting the most suitable PSSS approach.!##!Material and methods!#!Forty-four patients who underwent PSSS (2002 to 2013) were examined by contrast-enhanced CT (n = 33) and/or MRI (n = 15) prior to surgery. Imaging was analyzed independently by two observers (O1 and O2) with different levels of experience (O1 > O2). They recommended two shunting techniques (vessels and anastomotic variant) for each patient and ranked them according to their appropriateness and complexity. Findings were compared with the actually performed shunt procedure and its outcome.!##!Results!#!The first two choices taken together covered the performed PSSS regarding vessels in 88%/100% (CT/MRI, O1) and 76%/73% (O2); and vessels + anastomosis in 79%/73% (O1) and 67%/60% (O2). The prediction of complex surgical procedures (resection of interposing structures, additional thrombectomy, use of a collateral vessel, and use of a graft interposition) was confirmed in 87%, resulting in 80% sensitivity and 96% specificity. Larger shunt vessel distances were associated with therapy failure (p = 0.030) and a vessel distance of ≥ 20 mm was identified as optimal cutoff, in which a graft interposition was used. There was no significant difference between MRI and CT in predicting the intraoperative decisions (p = 0.294 to 1.000).!##!Conclusion!#!Preoperative imaging and an experienced radiologist can guide surgeons in PSSS. CT and MRI provide the information necessary to identify technically feasible variants and complicating factors

    Clinical impact of follicular oncocytic (Hürthle cell) carcinoma in comparison with corresponding classical follicular thyroid carcinoma

    Get PDF
    PURPOSE There are controversial debates if patients with Hürthle cell carcinoma, also known as oxyphilic or oncocytic cell follicular thyroid carcinoma, have a poorer outcome. In this study, we systematically evaluated the clinical outcome in a large patient cohort following thyroidectomy and initial I-131 radioactive iodine therapy (RIT). METHODS We retrospectively evaluated a total of 378 patients with diagnosed oncocytic follicular Hürthle cell carcinoma (OFTC) (N~= 126) or with classical follicular thyroid carcinoma (FTC) (N~= 252). Patients received thyroidectomy and complementary I-131 RIT. Clinical data regarding basic demographic characteristics, tumor grade, persistent disease and recurrence during follow-up, and disease-free, disease-specific, and overall survival were collected during follow-up of 6.9 years (interquartile range 3.7; 11.7 years). Univariate and multivariate analyses were used to identify factors associated with disease-related and overall survival. RESULTS Before and after matching for risk factors, recurrence was significantly more frequently diagnosed in OFTC patients during follow-up (17% vs. 8%; p value 0.037). Likewise, OFTC patients presented with a reduced mean disease-free survival of 17.9 years (95% CI 16.0-19.8) vs. 20.1 years (95% CI 19.0-21.1) in FTC patients (p value 0.027). Multivariate analysis revealed OFTC (HR 0.502; 95% CI 0.309-0.816) as the only independent prognostic factor for disease-free survival. Distant metastases of OFTC patients were significantly less iodine-avid (p value 0.014). Mean disease-specific and overall survival did not differ significantly (p value 0.671 and 0.687) during follow-up of median 6.9 years (3.7; 11.7 years). CONCLUSIONS Our study suggests that recurrence is more often seen in OFTC patients. OFTC patients have a poorer prognosis for disease-free survival. Thus, OFTC and FTC behave differently and should be categorized separately. However, patients suffering from OFTC present with the same overall and disease-specific survival at the end of follow-up indifferent to FTC patients after initial RIT

    Longitudinal [F-18]GE-180 PET Imaging Facilitates In Vivo Monitoring of TSPO Expression in the GL261 Glioblastoma Mouse Model

    Get PDF
    The 18 kDa translocator protein (TSPO) is increasingly recognized as an interesting target for the imaging of glioblastoma (GBM). Here, we investigated TSPO PET imaging and autoradiography in the frequently used GL261 glioblastoma mouse model and aimed to generate insights into the temporal evolution of TSPO radioligand uptake in glioblastoma in a preclinical setting. We performed a longitudinal [F-18]GE-180 PET imaging study from day 4 to 14 post inoculation in the orthotopic syngeneic GL261 GBM mouse model (n = 21 GBM mice, n = 3 sham mice). Contrast-enhanced computed tomography (CT) was performed at the day of the final PET scan (+/- 1 day). [F-18] GE-180 autoradiography was performed on day 7, 11 and 14 (ex vivo: n = 13 GBM mice, n = 1 sham mouse;in vitro: n = 21 GBM mice;n = 2 sham mice). Brain sections were also used for hematoxylin and eosin (H&E) staining and TSPO immunohistochemistry. [F-18]GE-180 uptake in PET was elevated at the site of inoculation in GBM mice as compared to sham mice at day 11 and later (at day 14, TBRmax +27% compared to sham mice, p = 0.001). In GBM mice, [F-18]GE-180 uptake continuously increased over time, e.g., at day 11, mean TBRmax +16% compared to day 4, p = 0.011. [(18) F]GE-180 uptake as depicted by PET was in all mice co-localized with contrast-enhancement in CT and tissue-based findings. [F-18]GE-180 ex vivo and in vitro autoradiography showed highly congruent tracer distribution (r = 0.99, n = 13, p < 0.001). In conclusion, [F-18]GE-180 PET imaging facilitates non-invasive in vivo monitoring of TSPO expression in the GL261 GBM mouse model. [F-18]GE-180 in vitro autoradiography is a convenient surrogate for ex vivo autoradiography, allowing for straightforward identification of suitable models and scan time-points on previously generated tissue sections

    Report of first recurrent glioma patients examined with PET-MRI prior to re-irradiation

    Get PDF
    Background and purpose The advantage of combined PET-MRI over sequential PET and MRI is the high spatial conformity and the absence of time delay between the examinations. The benefit of this technique for planning of re-irradiation (re-RT) treatment is unkown yet. Imaging data from a phase 1 trial of re-RT for recurrent glioma was analysed to assess whether planning target volumes and treatment margins in glioma re-RT can be adjusted by PET-MRI with rater independent PET based biological tumour volumes (BTVs). Patients and methods Combined PET-MRI with the tracer O-(2-F-18-fluoroethyl)-1-tyrosine (F-18-FET) prior to re-RT was performed in recurrent glioma patients in a phase I trial. GTVs including all regions suspicious of tumour on contrast enhanced MRI were delineated by three experienced radiation oncologists and included into MRI based consensus GTVs (mRGTVs). BTVs were semiautomatically delineated with a fixed threshold of 1.6 x background activity. Corresponding BTVs and mRGTVs were fused into union volume RET-NARGIVs. The Sorensen Dice coefficient and the conformity index were used to assess the geometric overlap of the BTVs with the mRGTVs. A recurrence pattern analysis was performed based on the original planning target volumes (PTVs = GTV + 10 mm margin or 5 mm in one case) and the RET-NARGTVs with margins of 10, 8, 5 and 3 mm. Results Seven recurrent glioma patients, who received PET-MRI prior to re-RT, were included into the present planning study. At the time of re-RT, patients were in median 54 years old and had a median Karnofsky Performance Status (KPS) score of 80. Median post-recurrence survival after the beginning of re-RT was 13 months. Concomitant bevacizumab therapy was applied in six patients and one patient received chemoradiation with temozolomide. Median GTV volumes of the three radiation oncologists were 35.0, 37.5 and 40.5 cubic centimeters (cc) and median (MR)GTV volume 41.8 cc. Median BTV volume was 36.6 cc and median (PET-MR)GTV volume 59.3 cc. The median Sorensen-Dice coefficient for the comparison between (MR)GTV and BTV was 0.61 and the median conformity index 0.44. Recurrence pattern analysis revealed two central, two in-field and one distant recurrence within both, the original PTV, as well as the (PER-MR)GTV with a reduced margin of 3 mm. Conclusion PET-MRI provides radiation treatment planning imaging with high spatial and timely conformity for high-grade glioma patients treated with re-RT with potential advancements for target volume delineation. Prospective randomised trials are warranted to further investigate the treatment benefits of PET-MRI based re-RT planning

    Prediction of TERTp-mutation status in IDH-wildtype high-grade gliomas using pre-treatment dynamic 18FFET PET radiomics

    Get PDF
    PURPOSE To evaluate radiomic features extracted from standard static images (20-40~min p.i.), early summation images (5-15~min p.i.), and dynamic 18FFET PET images for the prediction of TERTp-mutation status in patients with IDH-wildtype high-grade glioma. METHODS A total of 159 patients (median age 60.2~years, range 19-82~years) with newly diagnosed IDH-wildtype diffuse astrocytic glioma (WHO grade III or IV) and dynamic 18FFET PET prior to surgical intervention were enrolled and divided into a training (n = 112) and a testing cohort (n = 47) randomly. First-order, shape, and texture radiomic features were extracted from standard static (20-40~min summation images; TBR20-40), early static (5-15~min summation images; TBR5-15), and dynamic (time-to-peak; TTP) images, respectively. Recursive feature elimination was used for feature selection by 10-fold cross-validation in the training cohort after normalization, and logistic regression models were generated using the radiomic features extracted from each image to differentiate TERTp-mutation status. The areas under the ROC curve (AUC), accuracy, sensitivity, specificity, and positive and negative predictive value were calculated to illustrate diagnostic power in both the training and testing cohort. RESULTS The TTP model comprised nine selected features and achieved highest predictability of TERTp-mutation with an AUC of 0.82 (95{\%} confidence interval 0.71-0.92) and sensitivity of 92.1{\%} in the independent testing cohort. Weak predictive capability was obtained in the TBR5-15 model, with an AUC of 0.61 (95{\%} CI 0.42-0.80) in the testing cohort, while no predictive power was observed in the TBR20-40 model. CONCLUSIONS Radiomics based on TTP images extracted from dynamic 18FFET PET can predict the TERTp-mutation status of IDH-wildtype diffuse astrocytic high-grade gliomas with high accuracy preoperatively

    Differential role of residual metabolic tumor volume in inoperable stage III NSCLC after chemoradiotherapy ± immune checkpoint inhibition

    Get PDF
    BACKGROUND The PET-derived metabolic tumor volume (MTV) is an independent prognosticator in non-small cell lung cancer (NSCLC) patients. We analyzed the prognostic value of residual MTV (rMTV) after completion of chemoradiotherapy (CRT) in inoperable stage III NSCLC patients with and without immune checkpoint inhibition (ICI). METHODS Fifty-six inoperable stage III NSCLC patients (16 female, median 65.0~years) underwent 18F-FDG PET/CT after completion of standard CRT. rMTV was delineated on 18F-FDG PET/CT using a standard threshold (liver SUVmean + 2 × standard deviation). 21/56 patients underwent additional ICI (CRT-IO, 21/56 patients) thereafter. Patients were divided in volumetric subgroups using median split dichotomization (MTV ≤ 4.3~ml vs. > 4.3~ml). rMTV, clinical features, and ICI-application were correlated with clinical outcome parameters (progression-free survival (PFS), local PFS (LPFS), and overall survival (OS). RESULTS Overall, median follow-up was 52.0~months. Smaller rMTV was associated with longer median PFS (29.3 vs. 10.5~months, p = 0.015), LPFS (49.9 vs. 13.5~months, p = 0.001), and OS (63.0 vs. 23.0~months, p = 0.003). CRT-IO patients compared to CRT patients showed significantly longer median PFS (29.3 vs. 11.2~months, p = 0.034), LPFS (median not reached vs. 14.0~months, p = 0.016), and OS (median not reached vs. 25.2~months, p = 0.007). In the CRT subgroup, smaller rMTV was associated with longer median PFS (33.5 vs. 8.6~months, p = 0.001), LPFS (49.9 vs. 10.1~months, p = 0.001), and OS (63.0 vs. 16.3~months, p = 0.004). In the CRT-IO subgroup, neither PFS, LPFS, nor OS were associated with MTV (p > 0.05 each). The findings were confirmed in subsequent multivariate analyses. CONCLUSION In stage III NSCLC, smaller rMTV is highly associated with superior clinical outcome, especially in patients undergoing CRT without ICI. Patients with CRT-IO show significantly improved outcome compared to CRT patients. Of note, clinical outcome in CRT-IO patients is independent of residual MTV. Hence, even patients with large rMTV might profit from ICI despite extensive tumor load
    corecore