64 research outputs found
Recommended from our members
Platelet signaling: a complex interplay between inhibitory and activatory networks
The role of platelets in hemostasis and thrombosis is dependent on a complex balance of activatory and inhibitory signaling pathways. Inhibitory signals released from the healthy vasculature suppress platelet activation in the absence of platelet receptor agonists. Activatory signals present at a site of injury initiate platelet activation and thrombus formation; subsequently, endogenous negative signaling regulators dampen activatory signals to control thrombus growth. Understanding the complex interplay between activatory and inhibitory signaling networks is an emerging challenge in the study of platelet biology and necessitates a systematic approach to utilize experimental data effectively. In this review, we will explore the key points of platelet regulation and signaling that maintain platelets in a resting state, mediate activation to elicit thrombus formation or provide negative feedback. Platelet signaling will be described in terms of key signaling molecules that are common to the pathways activated by platelet agonists and can be described as regulatory nodes for both positive and negative regulators. This article is protected by copyright. All rights reserved
Recommended from our members
Cobimetinib and trametinib inhibit platelet MEK but do not cause platelet dysfunction
The MEK inhibitors cobimetinib and trametinib are used in combination with BRAF inhibitors to treat metastatic melanoma but increase rates of hemorrhage relative to BRAF inhibitors alone. Platelets express several members of the MAPK signalling cascade including MEK1 and MEK2 and ERK1 and ERK2 but their role in platelet function and haemostasis is ambiguous as previous reports have been contradictory. It is therefore unclear if MEK inhibitors might be causing platelet dysfunction and contributing to increased hemorrhage. In the present study we performed pharmacological characterisation of cobimetinib and trametinib in vitro to investigate potential for MEK inhibitors to cause platelet dysfunction.
We report that whilst both cobimetinib and trametinib are potent inhibitors of platelet MEK activity, treatment with trametinib did not alter platelet function. Treatment with cobimetinib results in inhibition of platelet aggregation, integrin activation, alpha-granule secretion and adhesion but only at suprapharmacological concentrations. We identified that the inhibitory effects of high concentrations of cobimetinib are associated with off-target inhibition on Akt and PKC. Neither inhibitor caused any alteration in thrombus formation on collagen under flow conditions in vitro.
Our findings demonstrate that platelets are able to function normally when MEK activity is fully inhibited, indicating MEK activity is dispensable for normal platelet function. We conclude that the MEK inhibitors cobimetinib and trametinib do not induce platelet dysfunction and are therefore unlikely to contribute to increased incidence of bleeding reported during MEK inhibitor therapy
Recommended from our members
Ibrutinib inhibits platelet integrin αIIbβ3 outside-in signaling and thrombus stability but not adhesion to collagen
OBJECTIVE:
Ibrutinib is an irreversible Bruton tyrosine kinase inhibitor approved for treatment of Waldenstrom macroglobulinemia, chronic lymphocytic leukemia, and mantle cell lymphoma that increases the risk of bleeding among patients. Platelets from ibrutinib-treated patients exhibit deficiencies in collagen-evoked signaling in suspension; however, the significance of this observation and how it relates to bleeding risk is unclear, as platelets encounter immobile collagen in vivo. We sought to clarify the effects of ibrutinib on platelet function to better understand the mechanism underlying bleeding risk.
APPROACH AND RESULTS:
By comparing signaling in suspension and during adhesion to immobilized ligands, we found that the collagen signaling deficiency caused by ibrutinib is milder during adhesion to immobilized collagen. We also found that platelets in whole blood treated with ibrutinib adhered to collagen under arterial shear but formed unstable thrombi, suggesting that the collagen signaling deficiency caused by ibrutinib may not be the predominant cause of bleeding in vivo. However, clot retraction and signaling evoked by platelet adhesion to immobilized fibrinogen were also inhibited by ibrutinib, indicating that integrin αIIbβ3 outside-in signaling is also effected in addition to GPVI signaling. When ibrutinib was combined with the P2Y12 inhibitor, cangrelor, thrombus formation under arterial shear was inhibited additively.
CONCLUSIONS:
These findings suggest that (1) ibrutinib causes GPVI and integrin αIIbβ3 platelet signaling deficiencies that result in formation of unstable thrombi and may contribute toward bleeding observed in vivo and (2) combining ibrutinib with P2Y12 antagonists, which also inhibit thrombus stability, may have a detrimental effect on hemostasis
The contribution of vascular proteoglycans to atherothrombosis: clinical implications
The vascular extracellular matrix (ECM) produced by endothelial and smooth muscle cells is composed of collagens and glycoproteins and plays an integral role in regulating the structure and function of the vascular wall. Alteration in the expression of these proteins is associated with endothelial dysfunction and has been implicated in the development and progression of atherosclerosis. The ECM composition of atherosclerotic plaques varies depending on plaque phenotype and vulnerability, with distinct differences observed between ruptured and erodes plaques. Moreover, the thrombi on the exposed ECM are diverse in structure and composition, suggesting that the best antithrombotic approach may differ depending on plaque phenotype. This review provides a comprehensive overview of the role of proteoglycans in atherogenesis and thrombosis. It discusses the differential expression of the proteoglycans in different plaque phenotypes and the potential impact on platelet function and thrombosis. Finally, the review highlights the importance of this concept in developing a targeted approach to antithrombotic treatments to improve clinical outcomes in cardiovascular disease
Recommended from our members
RXR ligands negatively regulate thrombosis and hemostasis
OBJECTIVE: Platelets have been found to express intracellular nuclear receptors including the Retinoid X receptors (RXRα and RXRβ). Treatment of platelets with ligands of RXR has been shown to inhibit platelet responses to ADP and thromboxane A2, however the effects on responses to other platelet agonists as well as the underlying mechanism has not been fully characterised.
APPROACH AND RESULTS: The effect of 9-cis-retinoic acid (9-cis-RA), docosahexaenoic acid and synthetic ligand for RXR, methoprene acid on collagen receptor (GPVI) agonists and Thrombin stimulated platelet function; including aggregation, granule secretion, integrin activation, calcium mobilisation, integrin αIIbβ3 outside-in signalling and thrombus formation in vitro and in vivo were determined. Treatment of platelets with RXR ligands resulted in attenuation of platelet functional responses following stimulation by GPVI agonists and thrombin and inhibition of integrin αIIbβ3 outside-in signalling. Treatment with 9-cis-RA caused inhibition of thrombus formation in vitro and an impairment of thrombosis and haemostasis in vivo. Both RXR ligands stimulated protein kinase A activation, measured by VASP S157 phosphorylation, that was found to be dependent on both cAMP and NFκB activity.
CONCLUSIONS: This study identifies a widespread, negative regulatory role for RXR in the regulation of platelet functional responses and thrombus formation and describes novel events that lead to the upregulation of PKA, a known negative regulator of many aspects of platelet function. This mechanism may offer a possible explanation for the cardioprotective effects described in vivo following treatment with RXR ligands
Recommended from our members
Pharmacological actions of nobiletin in the modulation of platelet function
Background and Purpose
The discovery that flavonoids are capable of inhibiting platelet function has led to their investigation as potential antithrombotic agents. However, despite the range of studies on the antiplatelet properties of flavonoids, little is known about the mechanisms by which
flavonoids inhibit platelet function. In this study, we aimed to explore the pharmacological effects of a polymethoxy flavonoid, nobiletin in the modulation of platelet function.
Experimental Approach
The ability of nobiletin to modulate platelet function was explored by using a range of in vitro and in vivo experimental approaches. Aggregation, dense granule secretion and spreading assays were performed using washed platelets. The fibrinogen binding, α-granule
secretion and calcium mobilisation assays were performed using platelet-rich plasma and whole blood was used in impedance aggregometry and thrombus formation experiments. The effect of nobiletin in vivo was assessed by measuring tail bleeding time using C57BL/6 mice.
Key Results
Nobiletin was shown to supress a range of well-established activatory mechanisms, including
platelet aggregation, granule secretion, integrin modulation, calcium mobilisation and thrombus formation. Nobiletin was shown to extend bleeding time in mice and reduce the phosphorylation of Akt and PLCγ2 within the collagen receptor (GPVI) - stimulated pathway, in addition to increasing the levels of cGMP and phosphorylation of VASP, a protein whose activity is associated with inhibitory cyclic nucleotide signalling.
Conclusions and Implications
This study provides insight into the underlying molecular mechanisms through which nobiletin modulates haemostasis and thrombus formation. Therefore nobiletin may represent
a potential antithrombotic agent of dietary origins
Recommended from our members
The metabolites of the dietary flavonoid quercetin possess potent antithrombotic activity, and interact with aspirin to enhance antiplatelet effects
Quercetin, a dietary flavonoid, has been reported to possess antiplatelet activity. However, its extensive metabolism following ingestion has resulted in difficulty elucidating precise mechanisms of action. In this study, we aimed to characterize the antiplatelet mechanisms of two methylated metabolites of quercetin—isorhamnetin and tamarixetin—and explore potential interactions with aspirin. Isorhamnetin and tamarixetin inhibited human platelet aggregation, and suppressed activatory processes including granule secretion, integrin αIIbβ3 function, calcium mobilization, and spleen tyrosine kinase (Syk)/linker for activation of T cells (LAT) phosphorylation downstream of glycoprotein VI with similar potency to quercetin. All three flavonoids attenuated thrombus formation in an in vitro microfluidic model, and isoquercetin, a 3-O-glucoside of quercetin, inhibited thrombosis in a murine laser injury model. Isorhamnetin, tamarixetin, and quercetin enhanced the antiplatelet effects of aspirin more-than-additively in a plate-based aggregometry assay, reducing aspirin IC50 values by an order of magnitude, with this synergy maintained in a whole blood test of platelet function. Our data provide mechanistic evidence for the antiplatelet activity of two quercetin metabolites, isorhamnetin and tamarixetin, and suggest a potential antithrombotic role for these flavonoids. In combination with their interactions with aspirin, this may represent a novel avenue of investigation for the development of new antithrombotic strategies and management of current therapies
Differential proteoglycan expression in atherosclerosis alters platelet adhesion and activation
Proteoglycans are differentially expressed in different atherosclerotic plaque phenotypes, with biglycan and decorin characteristic of ruptured plaques and versican and hyaluronan more prominent in eroded plaques. Following plaque disruption, the exposure of extracellular matrix (ECM) proteins triggers platelet adhesion and thrombus formation. In this study, the impact of differential plaque composition on platelet function and thrombus formation was investigated. Platelet adhesion, activation and thrombus formation under different shear stress conditions were assessed in response to individual proteoglycans and composites representing different plaque phenotypes. The results demonstrated that all the proteoglycans tested mediated platelet adhesion but not platelet activation, and the extent of adhesion observed was significantly lower than that observed with type I and type III collagens. Thrombus formation upon the rupture and erosion ECM composites was significantly reduced (p < 0.05) compared to relevant collagen alone, indicating that proteoglycans negatively regulate platelet collagen responses. This was supported by results demonstrating that the addition of soluble biglycan or decorin to whole blood markedly reduced thrombus formation on type I collagen (p < 0.05). Interestingly, thrombus formation upon the erosion composite displayed aspirin sensitivity, whereas the rupture composite was intensive to aspirin, having implications for current antiplatelet therapy regimes. In conclusion, differential platelet responses and antiplatelet efficacy are observed on ECM composites phenotypic of plaque rupture and erosion. Proteoglycans inhibit thrombus formation and may offer a novel plaque-specific approach to limit arterial thrombosis
Recommended from our members
Human platelet protein ubiquitylation and changes following GPVI activation
Platelet activators stimulate post-translational modification of signalling proteins to change their
activity or their molecular interactions leading to signal propagation. One covalent modification is attachment of the small protein ubiquitin to lysine residues in target proteins. Modification by ubiquitin can either target proteins for degradation by the proteasome or act as a scaffold for other proteins. Pharmacological inhibition of deubiquitylases or the proteasome inhibits platelet
activation by collagen, demonstrating a role for ubiquitylation, but relatively few substrates for
ubiquitin have been identified and the molecular basis of inhibition is not established. Here we report the ubiquitome of human platelets and changes in ubiquitylated proteins following stimulation by collagen related peptide (CRP-XL). Using platelets from six individuals over three
independent experiments, we identified 1634 ubiquitylated peptides derived from 691 proteins, revealing extensive ubiquitylation in resting platelets. 925 of these peptides show an increase of more than 2-fold following stimulation with CRP-XL. Multiple sites of ubiquitylation were 16 identified on a number of proteins including Syk, filamin and integrin heterodimer subunits. This work reveals extensive protein ubiquitylation during activation of human platelets and opens the possibility of novel therapeutic interventions targeting the ubiquitin machinery
Novel anti-platelet properties of dietary cucurbitacins
Cucurbitacins are naturally occurring tetracyclic terpenes, present in foods such as cucumber and pumpkin, which elicit a range of anti-tumour, anti-inflammatory and anti-atherosclerotic effects. These dietary compounds modulate cellular functions through a variety of mechanisms, including dysregulation of the actin cytoskeleton and disruption of integrin function. Integrin outside-in signalling and cytoskeletal rearrangements are critical for stable thrombus formation and clot retraction following platelet adhesion at the site of vessel damage. We investigated the effects of cucurbitacins on platelet function and thrombus formation using human washed platelets, platelet rich plasma and whole blood in in vitro platelet function assays. We identified potent anti-platelet and anti-thrombotic effects of cucurbitacins B,E and I in human platelets. Treatment of platelets with cucurbitacins resulted in attenuation of platelet aggregation and fibrinogen binding evoked by ADP, TRAP6, collagen and CRP-XL. However, treatment with cucurbitacins did not significantly alter signalling events such as alpha granule secretion or mobilisation of intracellular calcium. We found that cucurbitacins potently inhibit integrin-mediated events, including adhesion and spreading on fibrinogen, fibronectin, collagen and laminin surfaces and cause a significant attenuation of clot retraction. Further investigation of cytoskeletal dynamics found treatment with cucurbitacins increased F actin polymerisation in a manner similar Jasplakinolide which has previously been shown to impair integrin activation, platelet spreading and clot retraction. The inhibitory effects of cucurbitacins on platelet integrin function and cytoskeletal dynamics resulted in the formation of highly unstable thrombi with reduced density under conditions of arterial shear. Our research identifies, anti-platelet and anti-thrombotic effects of dietary cucurbitacins that are linked to dysregulation of platelet cytoskeletal dynamics and integrin activity
- …