2 research outputs found

    Sewage sludge treated with metal nanomaterials inhibits earthworm reproduction more strongly than sludge treated with metal metals in bulk/salt forms

    Get PDF
    Earthworms were exposed to soils amended with sewage sludges from a wastewater treatment plant (WWTP) treated with nanomaterials (ENMs) or metal/ionic salts. Sewage sludges were generated with either no metal added to the WWTP influent (control), ionic ZnO, AgNO3 and bulk (micron sized) TiO2 added (ionic metal-treated) or ZnO, Ag and TiO2 ENMs added (ENM-treated). A sandy-loam soil was amended with the treated sewage sludge and aged in outdoor lysimeters for six months. Earthworms were exposed to the aged mixtures and a dilution of the mixtures (using control soil–sludge mix). Separate earthworm exposures to as-synthesized ENM and ionic metals salts (Zn/Ag singly) were carried out in the same soil. Earthworm reproduction was depressed by 90% in the high-metal ENM treatment and by 22–27% in the ionic metal and low-metal ENM soil–sludge treatments. Based on total metal concentrations in the soil–sludges the as-synthesised metal salt and ENM exposures predicted Zn was driving observed toxicity in the soil–sludge more than Ag. Earthworms from the high-metal ENM treatment accumulated significantly more Ag than other treatments whereas total Zn concentrations in the earthworms were within the range for earthworm Zn regulation for all treatments. This study suggests that current Zn limits set to provide protection against ionic metal forms may not protect soil biota where metals are input to WWTP in the ENM form

    TĪNĒ: the fate, behavior, and ecotoxicology of manufactured nanomaterials in terrestrial ecosystems

    No full text
    We have developed a life cycle perspective inspired conceptual model (CM) that indicates terrestrial ecosystems as a major repository for ZnO, TiO2, and Ag manufactured nanomaterials (MNMs) introduced via the land application of MNM-containing biosolids. In this project we are investigating the transport, fate, behavior, bioavailability, and effects of MNMs in(to) agroecosystems under environmentally realistic scenarios organized around three key hypotheses: Hypothesis (H1) Surface chemistry is the primary factor influencing the fate and transport of MNMs in the terrestrial environment as well as the bioavailability and effects to biological receptors; Hypothesis (H2) Once released to the environment, pristine MNM surfaces will be modified by interactions with organic and inorganic ligands (macromolecules) or via other biogeochemical transformations (aging effects forming a-MNMs); Hypothesis (H3) Ecoreceptors will respond to interactions with pristine metal and metal oxide MNMs, a-MNMs, and/or dissolved constituent metal ions and bulk oxides by specific ecological and toxicogenomic responses that will reflect their combined effects. The overall objectives are to: O1) Compare the transport, fate, behavior, bioavailability, and effects of MNMs, a- MNMs, and/or dissolved free metals/bulk oxides to organisms with key terrestrial ecosystem functions, as well as exposure pathways involving humans; O2) Determine MNM, surface modified MNM and a-MNM interactions with important biological targets relevant to the BLM and pBRM models and relate these interactions to physicochemical properties; O3) Validate models with information generated from experiments designed to address O1 for MNMs introduced through a pilot scale Waste Water Treatment Process (WWTP) to key terrestrial ecoreceptors, including effects of MNMs on the WWTP itself; O4) Determine realistic MNM emission scenarios for Tier 1 MNMs in wastewater from the WWT pilot plant data and develop first generation Life-Cycle-Analysis-inspired Risk Assessment (LCA-RA) model components for terrestrial effects of Tier 1 MNMs and a-MNMS based on data generated in experiments designed to address O1, O2, & O3; and O5) Provide tools for in situ detection, monitoring, and characterization of pristine MNMs and a-MNMs in environmental media and biota. The key results from aging and toxicity studies will be presented
    corecore