500 research outputs found
Speedy Transactions in Multicore In-Memory Databases
Silo is a new in-memory database that achieves excellent performance and scalability on modern multicore machines. Silo was designed from the ground up to use system memory and caches efficiently. For instance, it avoids all centralized contention points, including that of centralized transaction ID assignment. Silo's key contribution is a commit protocol based on optimistic concurrency control that provides serializability while avoiding all shared-memory writes for records that were only read. Though this might seem to complicate the enforcement of a serial order, correct logging and recovery is provided by linking periodically-updated epochs with the commit protocol. Silo provides the same guarantees as any serializable database without unnecessary scalability bottlenecks or much additional latency. Silo achieves almost 700,000 transactions per second on a standard TPC-C workload mix on a 32-core machine, as well as near-linear scalability. Considered per core, this is several times higher than previously reported results.Engineering and Applied Science
Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data
Many Galactic sources of gamma rays, such as supernova remnants, are expected
to produce neutrinos with a typical energy cutoff well below 100 TeV. For the
IceCube Neutrino Observatory located at the South Pole, the southern sky,
containing the inner part of the Galactic plane and the Galactic Center, is a
particularly challenging region at these energies, because of the large
background of atmospheric muons. In this paper, we present recent advancements
in data selection strategies for track-like muon neutrino events with energies
below 100 TeV from the southern sky. The strategies utilize the outer detector
regions as veto and features of the signal pattern to reduce the background of
atmospheric muons to a level which, for the first time, allows IceCube
searching for point-like sources of neutrinos in the southern sky at energies
between 100 GeV and several TeV in the muon neutrino charged current channel.
No significant clustering of neutrinos above background expectation was
observed in four years of data recorded with the completed IceCube detector.
Upper limits on the neutrino flux for a number of spectral hypotheses are
reported for a list of astrophysical objects in the southern hemisphere.Comment: 19 pages, 17 figures, 2 table
Search for Astrophysical Neutrinos from 1FLE Blazars with IceCube
The majority of astrophysical neutrinos have undetermined origins. The IceCube Neutrino Observatory has observed astrophysical neutrinos but has not yet identified their sources. Blazars are promising source candidates, but previous searches for neutrino emission from populations of blazars detected in âłGeV gamma rays have not observed any significant neutrino excess. Recent findings in multimessenger astronomy indicate that high-energy photons, coproduced with high-energy neutrinos, are likely to be absorbed and reemitted at lower energies. Thus, lower-energy photons may be better indicators of TeVâPeV neutrino production. This paper presents the first time-integrated stacking search for astrophysical neutrino emission from MeV-detected blazars in the first Fermi Large Area Telescope low energy (1FLE) catalog using ten years of IceCube muonâneutrino data. The results of this analysis are found to be consistent with a background-only hypothesis. Assuming an E neutrino spectrum and proportionality between the blazars MeV gamma-ray fluxes and TeVâPeV neutrino flux, the upper limit on the 1FLE blazar energy-scaled neutrino flux is determined to be 1.64 Ă 10^-12} TeV cm s at 90% confidence level. This upper limit is approximately 1% of IceCube\u27s diffuse muonâneutrino flux measurement
Searching for High-energy Neutrino Emission from Galaxy Clusters with IceCube
Galaxy clusters have the potential to accelerate cosmic rays (CRs) to ultrahigh energies via accretion shocks or embedded CR acceleration sites. The CRs with energies below the Hillas condition will be confined within the cluster and eventually interact with the intracluster medium gas to produce secondary neutrinos and gamma rays. Using 9.5 yr of muon neutrino track events from the IceCube Neutrino Observatory, we report the results of a stacking analysis of 1094 galaxy clusters with masses âł10 Mâ and redshifts between 0.01 and âŒ1 detected by the Planck mission via the SunyaevâZelâdovich effect. We find no evidence for significant neutrino emission and report upper limits on the cumulative unresolved neutrino flux from massive galaxy clusters after accounting for the completeness of the catalog up to a redshift of 2, assuming three different weighting scenarios for the stacking and three different power-law spectra. Weighting the sources according to mass and distance, we set upper limits at a 90% confidence level that constrain the flux of neutrinos from massive galaxy clusters (âł10 Mâ) to be no more than 4.6% of the diffuse IceCube observations at 100 TeV, assuming an unbroken Eâ power-law spectrum
Investigation of two Fermi-LAT gamma-ray blazars coincident with high-energy neutrinos detected by IceCube
After the identification of the gamma-ray blazar TXS 0506+056 as the first
compelling IceCube neutrino source candidate, we perform a systematic analysis
of all high-energy neutrino events satisfying the IceCube realtime trigger
criteria. We find one additional known gamma-ray source, the blazar GB6
J1040+0617, in spatial coincidence with a neutrino in this sample. The chance
probability of this coincidence is 30% after trial correction. For the first
time, we present a systematic study of the gamma-ray flux, spectral and optical
variability, and multi-wavelength behavior of GB6 J1040+0617 and compare it to
TXS 0506+056. We find that TXS 0506+056 shows strong flux variability in the
Fermi-LAT gamma-ray band, being in an active state around the arrival of
IceCube-170922A, but in a low state during the archival IceCube neutrino flare
in 2014/15. In both cases the spectral shape is statistically compatible () with the average spectrum showing no indication of a significant
relative increase of a high-energy component. While the association of GB6
J1040+0617 with the neutrino is consistent with background expectations, the
source appears to be a plausible neutrino source candidate based on its
energetics and multi-wavelength features, namely a bright optical flare and
modestly increased gamma-ray activity. Finding one or two neutrinos originating
from gamma-ray blazars in the given sample of high-energy neutrinos is
consistent with previously derived limits of neutrino emission from gamma-ray
blazars, indicating the sources of the majority of cosmic high-energy neutrinos
remain unknown.Comment: 22 pages, 11 figures, 2 Table
Search for Continuous and Transient Neutrino Emission Associated with IceCube's Highest-Energy Tracks: An 11-Year Analysis
IceCube alert events are neutrinos with a moderate-to-high probability of
having astrophysical origin. In this study, we analyze 11 years of IceCube data
and investigate 122 alert events and a selection of high-energy tracks detected
between 2009 and the end of 2021. This high-energy event selection (alert
events + high-energy tracks) has an average probability of to be of
astrophysical origin. We search for additional continuous and transient
neutrino emission within the high-energy events' error regions. We find no
evidence for significant continuous neutrino emission from any of the alert
event directions. The only locally significant neutrino emission is the
transient emission associated with the blazar TXS~0506+056, with a local
significance of , which confirms previous IceCube studies. When
correcting for 122 test positions, the global p-value is and is
compatible with the background hypothesis. We constrain the total continuous
flux emitted from all 122 test positions at 100~TeV to be below ~(TeV cm s) at 90% confidence assuming an
spectrum. This corresponds to 4.5% of IceCube's astrophysical diffuse flux.
Overall, we find no indication that alert events, in general, are linked to
lower-energetic continuous or transient neutrino emission.Comment: Accepted by Ap
A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors
IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole.
The main goal of IceCube is the detection of astrophysical neutrinos and the
identification of their sources. High-energy muon neutrinos are observed via
the secondary muons produced in charge current interactions with nuclei in the
ice. Currently, the best performing muon track directional reconstruction is
based on a maximum likelihood method using the arrival time distribution of
Cherenkov photons registered by the experiment's photomultipliers. A known
systematic shortcoming of the prevailing method is to assume a continuous
energy loss along the muon track. However at energies TeV the light yield
from muons is dominated by stochastic showers. This paper discusses a
generalized ansatz where the expected arrival time distribution is parametrized
by a stochastic muon energy loss pattern. This more realistic parametrization
of the loss profile leads to an improvement of the muon angular resolution of
up to for through-going tracks and up to a factor 2 for starting tracks
over existing algorithms. Additionally, the procedure to estimate the
directional reconstruction uncertainty has been improved to be more robust
against numerical errors
First Search for Unstable Sterile Neutrinos with the IceCube Neutrino Observatory
We present a search for an unstable sterile neutrino by looking for a
matter-induced signal in eight years of atmospheric data collected
from 2011 to 2019 at the IceCube Neutrino Observatory. Both the (stable)
three-neutrino and the 3+1 sterile neutrino models are disfavored relative to
the unstable sterile neutrino model, though with -values of 2.5\% and
0.81\%, respectively, we do not observe evidence for 3+1 neutrinos with
neutrino decay. The best-fit parameters for the sterile neutrino with decay
model from this study are ,
, and , where
is the decay-mediating coupling. The preferred regions from short-baseline
oscillation searches are excluded at 90\% C.L
- âŠ