105 research outputs found
September 18, 1971 Football Program, UOP vs. University of Texas at El Paso
https://scholarlycommons.pacific.edu/ua-football/1353/thumbnail.jp
Recommended from our members
Dependable software through higher-order strategic programming.
Program transformation is a restricted form of software construction that can be amenable to formal verification. When successful, the nature of the evidence provided by such a verification is considered strong and can constitute a major component of an argument that a high-consequence or safety-critical system meets its dependability requirements. This article explores the application of novel higher-order strategic programming techniques to the development of a portion of a class loader for a restricted implementation of the Java Virtual Machine (JVM). The implementation is called the SSP and is intended for use in high-consequence safety-critical embedded systems. Verification of the strategic program using ACL2 is also discussed
Recommended from our members
An abstract class loader for the SSP and its implementation in TL.
The SSP is a hardware implementation of a subset of the JVM for use in high consequence embedded applications. In this context, a majority of the activities belonging to class loading, as it is defined in the specification of the JVM, can be performed statically. Static class loading has the net result of dramatically simplifying the design of the SSP as well as increasing its performance. Due to the high consequence nature of its applications, strong evidence must be provided that all aspects of the SSP have been implemented correctly. This includes the class loader. This article explores the possibility of formally verifying a class loader for the SSP implemented in the strategic programming language TL. Specifically, an implementation of the core activities of an abstract class loader is presented and its verification in ACL2 is considered
Recommended from our members
Sediment erosion and transport at the Rio Grande mouth : report for the National Border Technology Program and International Boundary and Water Commission.
The mouth of the Rio Grande has become silted up, obstructing its flow into the Gulf of Mexico. This is problematic in that it has created extensive flooding. The purpose of this study was to determine the erosion and transport potential of the sediments obstructing the flow of the Rio Grande by employing a unique Mobile High Shear Stress flume developed by Sandia's Carlsbad Programs Group for the US Army Corps of Engineers. The flume measures in-situ sediment erosion properties at shear stresses ranging from normal flow to flood conditions for a variable depth sediment core. The flume is in a self-contained trailer that can be placed on site in the field. Erosion rates and sediment grain size distributions were determined from sediment samples collected in and around the obstruction and were subsequently used to characterize the erosion potential of the sediments under investigation
Development of a Numerical Simulation Tool for Continuously Reinforced Concrete Pavements
DTRT13-G-UTC36The accurate modeling of the main features of continuously-reinforced concrete pavements (CRCP) is of primary importance in a mechanistic-empirical pavement design procedure. The use of the finite element (FE) method as a comprehensive tool for modeling the responses of rigid pavements, CRCP in particular, has been limited because of the complexity of calculations in modeling material nonlinear behaviors, which are difficult to describe mathematically and computationally. Significant amount of research has been conducted to improve the design of CRCPs under traffic, environmental, and thermal loads. To develop a reliable model that better represents the behavior of CRCP, a clear understanding of the design features that impact CRCP responses is essential. Researchers from the University of Texas at El Paso developed NYSLAB to analyze the response of comprehensively jointed concrete pavements (JCPs) under different geometric configurations, foundation models, temperature gradient profiles and traffic loads. This tool has the capability to analyze pavements under nonlinear thermal profiles across the thickness of the slab and capture the frictional tractions between the slab and foundation. All the complications related to appropriate discretization and modeling are handled internally by the software. This research study aims to expand the capacity of NYSLAB by integrating a CRCP model that is capable of predicting the responses of a critical section within a CRCP pavement structure subjected to traffic and environmental loading conditions. Unlike JCPs, CRCPs use reinforcing steel rather than contraction joints for crack control. Therefore, the development of a new FE model that defines the complex interaction between the reinforcement steel and concrete as well as the slab-foundation interaction due to friction and temperature changes will be implemented into the proposed tool
Recommended from our members
Systems assessment of water savings impact of controlled environment agriculture (CEA) utilizing wirelessly networked Sense•Decide•Act•Communicate (SDAC) systems.
Reducing agricultural water use in arid regions while maintaining or improving economic productivity of the agriculture sector is a major challenge. Controlled environment agriculture (CEA, or, greenhouse agriculture) affords advantages in direct resource use (less land and water required) and productivity (i.e., much higher product yield and quality per unit of resources used) relative to conventional open-field practices. These advantages come at the price of higher operating complexity and costs per acre. The challenge is to implement and apply CEA such that the productivity and resource use advantages will sufficiently outweigh the higher operating costs to provide for overall benefit and viability. This project undertook an investigation of CEA for livestock forage production as a water-saving alternative to open-field forage production in arid regions. Forage production is a large consumer of fresh water in many arid regions of the world, including the southwestern U.S. and northern Mexico. With increasing competition among uses (agriculture, municipalities, industry, recreation, ecosystems, etc.) for limited fresh water supplies, agricultural practice alternatives that can potentially maintain or enhance productivity while reducing water use warrant consideration. The project established a pilot forage production greenhouse facility in southern New Mexico based on a relatively modest and passive (no active heating or cooling) system design pioneered in Chihuahua, Mexico. Experimental operations were initiated in August 2004 and carried over into early-FY05 to collect data and make initial assessments of operational and technical system performance, assess forage nutrition content and suitability for livestock, identify areas needing improvement, and make initial assessment of overall feasibility. The effort was supported through the joint leveraging of late-start FY04 LDRD funds and bundled CY2004 project funding from the New Mexico Small Business Technical Assistance program at Sandia. Despite lack of optimization with the project system, initial results show the dramatic water savings potential of hydroponic forage production compared with traditional irrigated open field practice. This project produced forage using only about 4.5% of the water required for equivalent open field production. Improved operation could bring water use to 2% or less. The hydroponic forage production system and process used in this project are labor intensive and not optimized for minimum water usage. Freshly harvested hydroponic forage has high moisture content that dilutes its nutritional value by requiring that livestock consume more of it to get the same nutritional content as conventional forage. In most other aspects the nutritional content compares well on a dry weight equivalent basis with other conventional forage. More work is needed to further explore and quantify the opportunities, limitations, and viability of this technique for broader use. Collection of greenhouse environmental data in this project was uniquely facilitated through the implementation and use of a self-organizing, wirelessly networked, multi-modal sensor system array with remote cell phone data link capability. Applications of wirelessly networked sensing with improved modeling/simulation and other Sandia technologies (e.g., advanced sensing and control, embedded reasoning, modeling and simulation, materials, robotics, etc.) can potentially contribute to significant improvement across a broad range of CEA applications
Understanding Climate Change Impact on Highway Hydraulic Design Procedures
DTRT13-G-UTC36The significant change in climate is evident from the records of increased temperature, changed precipitation pattern, increased frequency of extreme weather events like storms, floods, and so forth. Like other infrastructure highway infrastructures also suffer the consequences of these climate change. Since the hydraulic design of these infrastructures is performed using historical climate data, the designs may not be able to provide services because designs are not considering climate change influence especially in terms of precipitation intensity. This study aims at identifying the most accurate source of climate database that predicts future climate change with less uncertainty and links them into the evaluation of vulnerability and risk of the bridges so that the impact of future climate can be incorporated into the design of new infrastructures. In this study, the NARCCAP database has been used to extract the future climate data for different cities of SPTC representing states. Climate models have predicted as high as 10.2% increase in precipitation for Houston, Texas, which leads to an increase in the intensity of streamflow in that region. A hydraulic model has been established using HEC-RAS for streamflow modeling. Overtopping depth and scour depth have been estimated as the primary vulnerability stressors of the bridge. This study has estimated the range of the return periods of the floods for which bridge may fail under the predicted future climate scenarios. The annual economic loss has been calculated for the bridges, and possible adaptation strategies have been suggested using HYRISK software
Digital Twin Technologies towards Understanding the Interactions between Transportation and Other Civil Infrastructure Systems
69A3551747119Digital Twin (DT) technology is the next step in the gradual shift from physical to digital models in civil engineering. Computer-Aided Drafting (CAD) revolutionized the industry by reducing the time and costs associated with documenting design. Building Information Modeling (BIM) has eliminated the need for physical design descriptors (i.e., drawings or physical models). DT models build off CAD and BIM but are utilized over the operational life of the infrastructure as a management tool. A DT is a relevant abstraction of the physical asset; it is most frequently used to model, improve, and control manufacturing systems. Civil engineering applications using DTs have been emerging, but transportation infrastructure represents a challenging extension of DT technology because of its spatial scale, as well as its voluminous and time-varying data. However, DT is a powerful decision support tool for the design, maintenance, and management of transportation infrastructure, particularly for studying its interdependencies with other infrastructure systems, which is of relevance to smart cities. The primary objective of this research was to explore the effectiveness of DT technology as a tool to visualize and understand interactions between transportation and other related civil infrastructure systems
A Theoretical Model of Industrial Economy Inflationary Dynamics : JEL Category E31, Prices, Business Fluctuations, and Cycles
One of the ongoing policy issues confronting monetary authorities around the world is the management of a stable price environment. Unstable prices create uncertainty, lower investment, and raise costs of doing business, thus lowering rates of growth. As a result, there exists a widespread need for understanding inflationary dynamics in any country of interest. This paper develops a standard monetary inflation model and augments it to include import, labor, energy, and intermediate goods and materials cost of production factors in a theoretically plausible manner. Implications for implementing an empirical version of the model are also discussed with a view toward the various econometric difficulties that may surface in estimation
University of Texas System Reports
Proposed budget for the University of Texas at El Paso outlining projected income and expenditures, with supporting documentation. Contains index
- …