2 research outputs found

    IMECE2010-38693 Multi-objective crashworthiness optimization of Composite Hat-shape Energy Absorber using GMDH-type Neural Networks and Genetic Algorithms

    No full text
    Abstract Reducing the weight of car body and increasing the crashworthiness capability of car body are two important objectives of car design. In this paper, a multi-objective optimization for optimal composite hat-shape energy absorption system is presented At the first, the behaviors of the hat shape under impact, as simplified model of side member of a vehicle body, are studied by the finite element method using commercial software ABAQUS. Two meta-models based on the evolved group method of data handling (GMDH) type neural networks are then achieved for modeling of both the absorbed energy (E) and the Tsai-Hill Failure Criterion (TS) with respect to geometrical design variables using those training and testing data obtained models. The obtained polynomial neural metamodels are finally used in a multi-objective optimum design procedure using NSGA-II with a new diversity preserving mechanism for Pareto based optimization of hat-shape. Two conflicting objectives such as maximizing the energy absorption capability (E), minimizing the Tsai-Hill Failure Criterion are considered in this work
    corecore