6 research outputs found
From a Sequential to a Continuous Approach for LVV-h7 Preparation during Enzymatic Proteolysis in a Microfluidic- Based Extraction Process
Intensification of process is increasingly interesting in the context of recovery of industrial wastes. Among these compounds, animal blood is underexploited although it is an important source of bioactive peptides. LVV-h7 (LVVYPWTQRF) is one of these bioactive peptides from bovine haemoglobin hydrolysate. Our innovative approach consists of a continuous process involving at microfluidic scale for enzymatic proteolysis of bovine haemoglobin by pepsin, selective extraction of LVV-h7 to an organic solvent during the enzymatic reaction, followed by a second extraction to an aqueous phase for organic solvent recycling. Thus, the obtainment of pure LVV-h7 peptide with an efficient methodology of extraction and solvent recycling was proved
Grapevine Plants Management Using Natural Extracts and Phytosynthesized Silver Nanoparticles
Starting from the well-known antimicrobial properties of silver nanoparticles, the goal of this study is to evaluate the influence of two “green” recipes, namely an alcoholic extract of Dryopteris filix-mas (L.) Schott and a dispersion of silver nanoparticles phytosynthesized using the extract on grapevine pathogens. The influence of some grapevine parameters (pith/wood rapport, soluble sugars, starch, total sugars, total water content, length of young shoots, number of grapes) in field experiments was also studied. The study was conducted on four clones (Feteasca alba 97 St., Feteasca neagra 6 St., Feteasca regala 72 St., and Cabernet Sauvignon 131 St.) located in vegetation pots inside a greenhouse. For the phytosynthesis of the silver nanoparticles (AgNPs) we used a scaled-up technology, allowing us to obtain large quantities of nanoparticles-containing solution. The AgNPs analysis by X-ray diffraction and transmission electron microscopy confirmed the synthesis of spherical and quasi-spherical nanoparticles of 17 nm average diameter and 6.72 nm crystallite size. The field experiments registered different responses of the four clones to the treatment, using both the natural extracts and phytosynthesized nanoparticles solution. Both recipes exhibited a protective effect against the Uncinula necator pathogen. For the treatment using phytosynthesized nanoparticles, significant increases in the pith/wood ratio for white wine clones (Feteasca alba 97 St. and Feteasca regala 72 St.) were observed. The biochemical analyses revealed other significant increases of soluble sugars (red wine clones—Feteasca neagra and Cabernet Sauvignon/second year), starch (Feteasca alba and Cabernet Sauvignon in 2021 for both clones), total sugars (Feteasca alba and Feteasca neagra in 2021 for both clones), and of total water content (Feteasca alba and Feteasca neagra in 2021 for both clones), respectively. The applied treatments also led to an increase of young shoots length and grape numbers for all clones as compared to the control (chemical pesticide), which would suggest a potential biostimulant effect of the recipes