388 research outputs found
Spectral dimensionality reduction for HMMs
Hidden Markov Models (HMMs) can be accurately approximated using
co-occurrence frequencies of pairs and triples of observations by using a fast
spectral method in contrast to the usual slow methods like EM or Gibbs
sampling. We provide a new spectral method which significantly reduces the
number of model parameters that need to be estimated, and generates a sample
complexity that does not depend on the size of the observation vocabulary. We
present an elementary proof giving bounds on the relative accuracy of
probability estimates from our model. (Correlaries show our bounds can be
weakened to provide either L1 bounds or KL bounds which provide easier direct
comparisons to previous work.) Our theorem uses conditions that are checkable
from the data, instead of putting conditions on the unobservable Markov
transition matrix
Deriving Verb Predicates By Clustering Verbs with Arguments
Hand-built verb clusters such as the widely used Levin classes (Levin, 1993)
have proved useful, but have limited coverage. Verb classes automatically
induced from corpus data such as those from VerbKB (Wijaya, 2016), on the other
hand, can give clusters with much larger coverage, and can be adapted to
specific corpora such as Twitter. We present a method for clustering the
outputs of VerbKB: verbs with their multiple argument types, e.g.
"marry(person, person)", "feel(person, emotion)." We make use of a novel
low-dimensional embedding of verbs and their arguments to produce high quality
clusters in which the same verb can be in different clusters depending on its
argument type. The resulting verb clusters do a better job than hand-built
clusters of predicting sarcasm, sentiment, and locus of control in tweets
Modeling Empathy and Distress in Reaction to News Stories
Computational detection and understanding of empathy is an important factor
in advancing human-computer interaction. Yet to date, text-based empathy
prediction has the following major limitations: It underestimates the
psychological complexity of the phenomenon, adheres to a weak notion of ground
truth where empathic states are ascribed by third parties, and lacks a shared
corpus. In contrast, this contribution presents the first publicly available
gold standard for empathy prediction. It is constructed using a novel
annotation methodology which reliably captures empathy assessments by the
writer of a statement using multi-item scales. This is also the first
computational work distinguishing between multiple forms of empathy, empathic
concern, and personal distress, as recognized throughout psychology. Finally,
we present experimental results for three different predictive models, of which
a CNN performs the best.Comment: To appear at EMNLP 201
\u3ci\u3eA\u3c/i\u3e-Optimality for Active Learning of Logistic Regression Classifiers
Over the last decade there has been growing interest in pool-based active learning techniques, where instead of receiving an i.i.d. sample from a pool of unlabeled data, a learner may take an active role in selecting examples from the pool. Queries to an oracle (a human annotator in most applications) provide label information for the selected observations, but at a cost. The challenge is to end up with a model that provides the best possible generalization error at the least cost. Popular methods such as uncertainty sampling often work well, but sometimes fail badly. We take the A-optimality criterion used in optimal experimental design, and extend it so that it can be used for pool-based active learning of logistic regression classifiers. A-optimality has attractive theoretical properties, and empirical evaluation confirms that it offers a more robust approach to active learning for logistic regression than alternatives
- …