133 research outputs found

    Individual Physiological Adaptations Enable Selected Bacterial Taxa To Prevail during Long-Term Incubations

    Get PDF
    Enclosure experiments are frequently used to investigate the impact of changing environmental conditions on microbial assemblages. Yet, how the incuba- tion itself challenges complex bacterial communities is thus far unknown. In this study, metaproteomic profiling, 16S rRNA gene analyses, and cell counts were com- bined to evaluate bacterial communities derived from marine, mesohaline, and oli- gohaline conditions after long-term batch incubations. Early in the experiment, the three bacterial communities were highly diverse and differed significantly in their compositions. Manipulation of the enclosures with terrigenous dissolved organic car- bon resulted in notable differences compared to the control enclosures at this early phase of the experiment. However, after 55 days, bacterial communities in the ma- nipulated and the control enclosures under marine and mesohaline conditions were all dominated by gammaproteobacterium Spongiibacter. In the oligohaline enclo- sures, actinobacterial cluster I of the hgc group (hgc-I) remained abundant in the late phase of the incubation. Metaproteome analyses suggested that the ability to use outer membrane-based internal energy stores, in addition to the previously de- scribed grazing resistance, may enable the gammaproteobacterium Spongiibacter to prevail in long-time incubations. Under oligohaline conditions, the utilization of ex- ternal recalcitrant carbon appeared to be more important (hgc-I). Enclosure experi- ments with complex natural microbial communities are important tools to investi- gate the effects of manipulations. However, species-specific properties, such as individual carbon storage strategies, can cause manipulation-independent effects and need to be considered when interpreting results from enclosures.This study was financially supported by the SAW-funded ATKiM project, which provided funds to D. P. R. Herlemann, C. Meeske, K. Jürgens, S. Markert, and T. Schweder. D. P. R. Herlemann was also supported by the European Regional Develop- ment Fund/Estonian Research Council funded Mobilitas Plus Top Researcher grant MOBTT24. We thank the crew and captain of the RV Meteor (M86, M87) for support during the research cruise. The computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the PDC Centre for High Performance Computing (PDC-HPC) and Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX). We thank Jana Matulla for excellent technical assis- tance and Stephan Fuchs for his help and advice in MS database construction. We also thank Stefan E. Heiden for valuable help with the CDD BLAST analyses.This study was financially supported by the SAW-funded ATKiM project, which provided funds to D. P. R. Herlemann, C. Meeske, K. Jürgens, S. Markert, and T. Schweder. D. P. R. Herlemann was also supported by the European Regional Develop- ment Fund/Estonian Research Council funded Mobilitas Plus Top Researcher grant MOBTT24. We thank the crew and captain of the RV Meteor (M86, M87) for support during the research cruise. The computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the PDC Centre for High Performance Computing (PDC-HPC) and Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX). We thank Jana Matulla for excellent technical assis- tance and Stephan Fuchs for his help and advice in MS database construction. We also thank Stefan E. Heiden for valuable help with the CDD BLAST analyses

    Aquatic adaptation of a laterally acquired pectin degradation pathway in marine gammaproteobacteria

    Get PDF
    Mobile genomic islands distribute functional traits between microbes and habitats, yet it remains unclear how their proteins adapt to new environments. Here we used a comparative phylogenomic and proteomic approach to show that the marine bacterium Pseudoalteromonas haloplanktis ANT/505 acquired a genomic island with a functional pathway for pectin catabolism. Bioinformatics and biochemical experiments revealed that this pathway encodes a series of carbohydrate-active enzymes including two multimodular pectate lyases, PelA and PelB. PelA is a large enzyme with a polysaccharide lyase family 1 (PL1) domain and a carbohydrate esterase family 8 domain, and PelB contains a PL1 domain and two carbohydrate-binding domains of family 13. Comparative phylogenomic analyses indicate that the pathway was most likely acquired from terrestrial microbes, yet we observed multi-modular orthologues only in marine bacteria. Proteomic experiments showed that P. haloplanktis ANT/505 secretes both pectate lyases into the environment in the presence of pectin. These multi-modular enzymes may therefore represent a marine innovation that enhances physical interaction with pectins to reduce loss of substrate and enzymes by diffusion. Our results revealed that marine bacteria can catabolize pectin, and highlight enzyme fusion as a potential adaptation that may facilitate microbial consumption of polymeric substrates in aquatic environments

    Digital research data: from analysis of existing standards to a scientific foundation for a modular metadata schema in nanosafety

    Get PDF
    Background: Assessing the safety of engineered nanomaterials (ENMs) is an interdisciplinary and complex process producing huge amounts of information and data. To make such data and metadata reusable for researchers, manufacturers, and regulatory authorities, there is an urgent need to record and provide this information in a structured, harmonized, and digitized way. Results: This study aimed to identify appropriate description standards and quality criteria for the special use in nanosafety. There are many existing standards and guidelines designed for collecting data and metadata, ranging from regulatory guidelines to specific databases. Most of them are incomplete or not specifically designed for ENM research. However, by merging the content of several existing standards and guidelines, a basic catalogue of descriptive information and quality criteria was generated. In an iterative process, our interdisciplinary team identified deficits and added missing information into a comprehensive schema. Subsequently, this overview was externally evaluated by a panel of experts during a workshop. This whole process resulted in a minimum information table (MIT), specifying necessary minimum information to be provided along with experimental results on effects of ENMs in the biological context in a flexible and modular manner. The MIT is divided into six modules: general information, material information, biological model information, exposure information, endpoint read out information and analysis and statistics. These modules are further partitioned into module subdivisions serving to include more detailed information. A comparison with existing ontologies, which also aim to electronically collect data and metadata on nanosafety studies, showed that the newly developed MIT exhibits a higher level of detail compared to those existing schemas, making it more usable to prevent gaps in the communication of information. Conclusion: Implementing the requirements of the MIT into e.g., electronic lab notebooks (ELNs) would make the collection of all necessary data and metadata a daily routine and thereby would improve the reproducibility and reusability of experiments. Furthermore, this approach is particularly beneficial regarding the rapidly expanding developments and applications of novel non-animal alternative testing methods

    Preventing carbon nanoparticle-induced lung inflammation reduces antigen-specific sensitization and subsequent allergic reactions in a mouse model

    Get PDF
    BACKGROUND: Exposure of the airways to carbonaceous nanoparticles can contribute to the development of immune diseases both via the aggravation of the allergic immune response in sensitized individuals and by adjuvant mechanisms during the sensitization against allergens. The cellular and molecular mechanisms involved in these adverse pathways are not completely understood. We recently described that the reduction of carbon nanoparticle-induced lung inflammation by the application of the compatible solute ectoine reduced the aggravation of the allergic response in an animal system. In the current study we investigated the influence of carbon nanoparticles on the sensitization of animals to ovalbumin via the airways. Ectoine was used as a preventive strategy against nanoparticle-induced neutrophilic lung inflammation. METHODS: Balb/c mice were repetitively exposed to the antigen ovalbumin after induction of airway inflammation by carbon nanoparticles, either in the presence or in the absence of ectoine. Allergic sensitization was monitored by measurement of immunoglobulin levels and immune responses in lung and lung draining lymph nodes after challenge. Furthermore the role of dendritic cells in the effect of carbon nanoparticles was studied in vivo in the lymph nodes but also in vitro using bone marrow derived dendritic cells. RESULTS: Animals exposed to antigen in the presence of carbon nanoparticles showed increased effects with respect to ovalbumin sensitization, to the allergic airway inflammation after challenge, and to the specific T(H)2 response in the lymph nodes. The presence of ectoine during the sensitization significantly reduced these parameters. The number of antigen-loaded dendritic cells in the draining lymph nodes was identified as a possible cause for the adjuvant effect of the nanoparticles. In vitro assays indicate that the direct interaction of the particles with dendritic cells is not able to trigger CCR7 expression, while this endpoint is achieved by lung lavage fluid from nanoparticle-exposed animals. CONCLUSIONS: Using the intervention strategy of applying ectoine into the airways of animals we were able to demonstrate the relevance of neutrophilic lung inflammation for the adjuvant effect of carbon nanoparticles on allergic sensitization. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12989-015-0093-5) contains supplementary material, which is available to authorized users

    Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Titanium dioxide (TiO<sub>2</sub>) nanomaterials have considerable beneficial uses as photocatalysts and solar cells. It has been established for many years that pigment-grade TiO<sub>2 </sub>(200 nm sphere) is relatively inert when internalized into a biological model system (in vivo or in vitro). For this reason, TiO<sub>2 </sub>nanomaterials are considered an attractive alternative in applications where biological exposures will occur. Unfortunately, metal oxides on the nanoscale (one dimension < 100 nm) may or may not exhibit the same toxic potential as the original material. A further complicating issue is the effect of modifying or engineering of the nanomaterial to be structurally and geometrically different from the original material.</p> <p>Results</p> <p>TiO<sub>2 </sub>nanospheres, short (< 5 μm) and long (> 15 μm) nanobelts were synthesized, characterized and tested for biological activity using primary murine alveolar macrophages and in vivo in mice. This study demonstrates that alteration of anatase TiO<sub>2 </sub>nanomaterial into a fibre structure of greater than 15 μm creates a highly toxic particle and initiates an inflammatory response by alveolar macrophages. These fibre-shaped nanomaterials induced inflammasome activation and release of inflammatory cytokines through a cathepsin B-mediated mechanism. Consequently, long TiO<sub>2 </sub>nanobelts interact with lung macrophages in a manner very similar to asbestos or silica.</p> <p>Conclusions</p> <p>These observations suggest that any modification of a nanomaterial, resulting in a wire, fibre, belt or tube, be tested for pathogenic potential. As this study demonstrates, toxicity and pathogenic potential change dramatically as the shape of the material is altered into one that a phagocytic cell has difficulty processing, resulting in lysosomal disruption.</p

    Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1Y2 sex chromosome system

    Get PDF
    Rumex hastatulus is the North American endemic dioecious plant with heteromorphic sex chromosomes. It is differentiated into two chromosomal races: Texas (T) race characterised by a simple XX/XY sex chromosome system and North Carolina (NC) race with a polymorphic XX/XY1Y2 sex chromosome system. The gross karyotype morphology in NC race resembles the derived type, but chromosomal changes that occurred during its evolution are poorly understood. Our C-banding/DAPI and fluorescence in situ hybridization (FISH) experiments demonstrated that Y chromosomes of both races are enriched in DAPI-positive sequences and that the emergence of polymorphic sex chromosome system was accompanied by the break of ancestral Y chromosome and switch in the localization of 5S rDNA, from autosomes to sex chromosomes (X and Y2). Two contrasting domains were detected within North Carolina Y chromosomes: the older, highly heterochromatinised, inherited from the original Y chromosome and the younger, euchromatic, representing translocated autosomal material. The flow-cytometric DNA estimation showed ∼3.5 % genome downsizing in the North Carolina race. Our results are in contradiction to earlier reports on the lack of heterochromatin within Y chromosomes of this species and enable unambiguous identification of autosomes involved in the autosome-heterosome translocation, providing useful chromosome landmarks for further studies on the karyotype and sex chromosome differentiation in this species

    Role of Mutagenicity in Asbestos Fiber-Induced Carcinogenicity and Other Diseases

    Get PDF
    The cellular and molecular mechanisms of how asbestos fibers induce cancers and other diseases are not well understood. Both serpentine and amphibole asbestos fibers have been shown to induce oxidative stress, inflammatory responses, cellular toxicity and tissue injuries, genetic changes, and epigenetic alterations in target cells in vitro and tissues in vivo. Most of these mechanisms are believe to be shared by both fiber-induced cancers and noncancerous diseases. This article summarizes the findings from existing literature with a focus on genetic changes, specifically, mutagenicity of asbestos fibers. Thus far, experimental evidence suggesting the involvement of mutagenesis in asbestos carcinogenicity is more convincing than asbestos-induced fibrotic diseases. The potential contributions of mutagenicity to asbestos-induced diseases, with an emphasis on carcinogenicity, are reviewed from five aspects: (1) whether there is a mutagenic mode of action (MOA) in fiber-induced carcinogenesis; (2) mutagenicity/carcinogenicity at low dose; (3) biological activities that contribute to mutagenicity and impact of target tissue/cell type; (4) health endpoints with or without mutagenicity as a key event; and finally, (5) determinant factors of toxicity in mutagenicity. At the end of this review, a consensus statement of what is known, what is believed to be factual but requires confirmation, and existing data gaps, as well as future research needs and directions, is provided
    corecore