222 research outputs found
Note: A Simple Thermal Gradient Annealing Unit for the Treatment of Thin Films
A gradient annealing cell has been developed for the high-throughput study of thermalannealing effects on thin-film libraries in different environments. The inexpensive gradientannealing unit permits temperature gradients as large as 28 °C/mm and can accommodate samples ranging in length from 13 mm to 51 mm. The system was validated by investigating the effects of annealing temperature on the crystallinity, resistivity, and transparency of tin-doped indium oxide deposited on a glass substrate by magnetron sputtering. The unit developed in this work will permit the rapid optimization of materials properties such as crystallinity, homogeneity, and conductivity across a variety of applications
Characterization of the human ESC transcriptome by hybrid sequencing
Although transcriptional and posttranscriptional events are detected
in RNA-Seq data from second-generation sequencing, fulllength
mRNA isoforms are not captured. On the other hand, thirdgeneration
sequencing, which yields much longer reads, has
current limitations of lower raw accuracy and throughput. Here,
we combine second-generation sequencing and third-generation
sequencing with a custom-designed method for isoform identification
and quantification to generate a high-confidence isoform
dataset for human embryonic stem cells (hESCs). We report 8,084
RefSeq-annotated isoforms detected as full-length and an additional
5,459 isoforms predicted through statistical inference. Over
one-third of these are novel isoforms, including 273 RNAs from
gene loci that have not previously been identified. Further characterization
of the novel loci indicates that a subset is expressed in
pluripotent cells but not in diverse fetal and adult tissues; moreover,
their reduced expression perturbs the network of pluripotency-
associated genes. Results suggest that gene identification,
even in well-characterized human cell lines and tissues, is likely far
from complete
An evolutionary driver of interspersed segmental duplications in primates
Background
The complex interspersed pattern of segmental duplications in humans is responsible for rearrangements associated with neurodevelopmental disease, including the emergence of novel genes important in human brain evolution. We investigate the evolution of LCR16a, a putative driver of this phenomenon that encodes one of the most rapidly evolving human–ape gene families, nuclear pore interacting protein (NPIP).
Results
Comparative analysis shows that LCR16a has independently expanded in five primate lineages over the last 35 million years of primate evolution. The expansions are associated with independent lineage-specific segmental duplications flanking LCR16a leading to the emergence of large interspersed duplication blocks at non-orthologous chromosomal locations in each primate lineage. The intron-exon structure of the NPIP gene family has changed dramatically throughout primate evolution with different branches showing characteristic gene models yet maintaining an open reading frame. In the African ape lineage, we detect signatures of positive selection that occurred after a transition to more ubiquitous expression among great ape tissues when compared to Old World and New World monkeys. Mouse transgenic experiments from baboon and human genomic loci confirm these expression differences and suggest that the broader ape expression pattern arose due to mutational changes that emerged in cis.
Conclusions
LCR16a promotes serial interspersed duplications and creates hotspots of genomic instability that appear to be an ancient property of primate genomes. Dramatic changes to NPIP gene structure and altered tissue expression preceded major bouts of positive selection in the African ape lineage, suggestive of a gene undergoing strong adaptive evolution
A high-quality bonobo genome refines the analysis of hominid evolution
The divergence of chimpanzee and bonobo provides one of the few examples of recent hominid speciation1,2. Here we describe a fully annotated, high-quality bonobo genome assembly, which was constructed without guidance from reference genomes by applying a multiplatform genomics approach. We generate a bonobo genome assembly in which more than 98% of genes are completely annotated and 99% of the gaps are closed, including the resolution of about half of the segmental duplications and almost all of the full-length mobile elements. We compare the bonobo genome to those of other great apes1,3,4,5 and identify more than 5,569 fixed structural variants that specifically distinguish the bonobo and chimpanzee lineages. We focus on genes that have been lost, changed in structure or expanded in the last few million years of bonobo evolution. We produce a high-resolution map of incomplete lineage sorting and estimate that around 5.1% of the human genome is genetically closer to chimpanzee or bonobo and that more than 36.5% of the genome shows incomplete lineage sorting if we consider a deeper phylogeny including gorilla and orangutan. We also show that 26% of the segments of incomplete lineage sorting between human and chimpanzee or human and bonobo are non-randomly distributed and that genes within these clustered segments show significant excess of amino acid replacement compared to the rest of the genome
Unraveling incompatibility between wheat and the fungal pathogen Zymoseptoria tritici through apoplastic proteomics
Background: Hemibiotrophic fungal pathogen Zymoseptoria tritici causes severe foliar disease in wheat. However, current knowledge of molecular mechanisms involved in plant resistance to Z. tritici and Z. tritici virulence factors is far from being complete. The present work investigated the proteome of leaf apoplastic fluid with emphasis on both host wheat and Z. tritici during the compatible and incompatible interactions. Results: The proteomics analysis revealed rapid host responses to the biotrophic growth, including enhanced carbohydrate metabolism, apoplastic defenses and stress, and cell wall reinforcement, might contribute to resistance. Compatibility between the host and the pathogen was associated with inactivated plant apoplastic responses as well as fungal defenses to oxidative stress and perturbation of plant cell wall during the initial biotrophic stage, followed by the strong induction of plant defenses during the necrotrophic stage. To study the role of anti-oxidative stress in Z. tritici pathogenicity in depth, a YAP1 transcription factor regulating antioxidant expression was deleted and showed the contribution to anti-oxidative stress in Z. tritici ,but was not required for pathogenicity. This result suggests the functional redundancy of antioxidants in the fungus. Conclusions: The data demonstrate that incompatibility is probably resulted from the proteome-level activation of host apoplastic defenses as well as fungal incapability to adapt to stress and interfere with host cell at the biotrophic stage of the interaction
Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance.
Esophageal adenocarcinoma (EAC) has a poor outcome, and targeted therapy trials have thus far been disappointing owing to a lack of robust stratification methods. Whole-genome sequencing (WGS) analysis of 129 cases demonstrated that this is a heterogeneous cancer dominated by copy number alterations with frequent large-scale rearrangements. Co-amplification of receptor tyrosine kinases (RTKs) and/or downstream mitogenic activation is almost ubiquitous; thus tailored combination RTK inhibitor (RTKi) therapy might be required, as we demonstrate in vitro. However, mutational signatures showed three distinct molecular subtypes with potential therapeutic relevance, which we verified in an independent cohort (n = 87): (i) enrichment for BRCA signature with prevalent defects in the homologous recombination pathway; (ii) dominant T>G mutational pattern associated with a high mutational load and neoantigen burden; and (iii) C>A/T mutational pattern with evidence of an aging imprint. These subtypes could be ascertained using a clinically applicable sequencing strategy (low coverage) as a basis for therapy selection.Whole-genome sequencing of esophageal adenocarcinoma samples was performed as part of the International Cancer Genome Consortium (ICGC) through the oEsophageal Cancer Clinical and Molecular Stratification (OCCAMS) Consortium and was funded by Cancer Research UK. We thank the ICGC members for their input on verification standards as part of the benchmarking exercise. We thank the Human Research Tissue Bank, which is supported by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, from Addenbrooke’s Hospital and UCL. Also the University Hospital of Southampton Trust and the Southampton, Birmingham, Edinburgh and UCL Experimental Cancer Medicine Centres and the QEHB charities. This study was partly funded by a project grant from Cancer Research UK. R.C.F. is funded by an NIHR Professorship and receives core funding from the Medical Research Council and infrastructure support from the Biomedical Research Centre and the Experimental Cancer Medicine Centre. We acknowledge the support of The University of Cambridge, Cancer Research UK (C14303/A17197) and Hutchison Whampoa Limited. We would like to thank Dr. Peter Van Loo for providing the NGS version of ASCAT for copy number calling. We are grateful to all the patients who provided written consent for participation in this study and the staff at all participating centres.
Some of the work was undertaken at UCLH/UCL who received a proportion of funding from the Department of Health’s NIHR Biomedical Research Centres funding scheme. The work at UCLH/UCL was also supported by the CRUK UCL Early Cancer Medicine Centre.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.365
Recommended from our members
Patient-specific cancer genes contribute to recurrently perturbed pathways and establish therapeutic vulnerabilities in esophageal adenocarcinoma
Abstract: The identification of cancer-promoting genetic alterations is challenging particularly in highly unstable and heterogeneous cancers, such as esophageal adenocarcinoma (EAC). Here we describe a machine learning algorithm to identify cancer genes in individual patients considering all types of damaging alterations simultaneously. Analysing 261 EACs from the OCCAMS Consortium, we discover helper genes that, alongside well-known drivers, promote cancer. We confirm the robustness of our approach in 107 additional EACs. Unlike recurrent alterations of known drivers, these cancer helper genes are rare or patient-specific. However, they converge towards perturbations of well-known cancer processes. Recurrence of the same process perturbations, rather than individual genes, divides EACs into six clusters differing in their molecular and clinical features. Experimentally mimicking the alterations of predicted helper genes in cancer and pre-cancer cells validates their contribution to disease progression, while reverting their alterations reveals EAC acquired dependencies that can be exploited in therapy
Baseline Features and Reasons for Nonparticipation in the Colonoscopy Versus Fecal Immunochemical Test in Reducing Mortality From Colorectal Cancer (CONFIRM) Study, a Colorectal Cancer Screening Trial.
IMPORTANCE: The Colonoscopy Versus Fecal Immunochemical Test in Reducing Mortality From Colorectal Cancer (CONFIRM) randomized clinical trial sought to recruit 50 000 adults into a study comparing colorectal cancer (CRC) mortality outcomes after randomization to either an annual fecal immunochemical test (FIT) or colonoscopy.
OBJECTIVE: To (1) describe study participant characteristics and (2) examine who declined participation because of a preference for colonoscopy or stool testing (ie, fecal occult blood test [FOBT]/FIT) and assess that preference\u27s association with geographic and temporal factors.
DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study within CONFIRM, which completed enrollment through 46 Department of Veterans Affairs medical centers between May 22, 2012, and December 1, 2017, with follow-up planned through 2028, comprised veterans aged 50 to 75 years with an average CRC risk and due for screening. Data were analyzed between March 7 and December 5, 2022.
EXPOSURE: Case report forms were used to capture enrolled participant data and reasons for declining participation among otherwise eligible individuals.
MAIN OUTCOMES AND MEASURES: Descriptive statistics were used to characterize the cohort overall and by intervention. Among individuals declining participation, logistic regression was used to compare preference for FOBT/FIT or colonoscopy by recruitment region and year.
RESULTS: A total of 50 126 participants were recruited (mean [SD] age, 59.1 [6.9] years; 46 618 [93.0%] male and 3508 [7.0%] female). The cohort was racially and ethnically diverse, with 748 (1.5%) identifying as Asian, 12 021 (24.0%) as Black, 415 (0.8%) as Native American or Alaska Native, 34 629 (69.1%) as White, and 1877 (3.7%) as other race, including multiracial; and 5734 (11.4%) as having Hispanic ethnicity. Of the 11 109 eligible individuals who declined participation (18.0%), 4824 (43.4%) declined due to a stated preference for a specific screening test, with FOBT/FIT being the most preferred method (2820 [58.5%]) vs colonoscopy (1958 [40.6%]; P \u3c .001) or other screening tests (46 [1.0%] P \u3c .001). Preference for FOBT/FIT was strongest in the West (963 of 1472 [65.4%]) and modest elsewhere, ranging from 199 of 371 (53.6%) in the Northeast to 884 of 1543 (57.3%) in the Midwest (P = .001). Adjusting for region, the preference for FOBT/FIT increased by 19% per recruitment year (odds ratio, 1.19; 95% CI, 1.14-1.25).
CONCLUSIONS AND RELEVANCE: In this cross-sectional analysis of veterans choosing nonenrollment in the CONFIRM study, those who declined participation more often preferred FOBT or FIT over colonoscopy. This preference increased over time and was strongest in the western US and may provide insight into trends in CRC screening preferences
- …