1,368 research outputs found

    Determining the Physical Properties of the B Stars I. Methodology and First Results

    Full text link
    We describe a new approach to fitting the UV-to-optical spectra of B stars to model atmospheres and present initial results. Using a sample of lightly reddened stars, we demonstrate that the Kurucz model atmospheres can produce excellent fits to either combined low dispersion IUE and optical photometry or HST FOS spectrophotometry, as long as the following conditions are fulfilled: 1) an extended grid of Kurucz models is employed, 2) the IUE NEWSIPS data are placed on the FOS absolute flux system using the Massa & Fitzpatrick (1999) transformation, and 3) all of the model parameters and the effects of interstellar extinction are solved for simultaneously. When these steps are taken, the temperatures, gravities, abundances and microturbulence velocities of lightly reddened B0-A0 V stars are determined to high precision. We also demonstrate that the same procedure can be used to fit the energy distributions of stars which are reddened by any UV extinction curve which can be expressed by the Fitzpatrick & Massa (1990) parameterization scheme. We present an initial set of results and verify our approach through comparisons with angular diameter measurements and the parameters derived for an eclipsing B star binary. We demonstrate that the metallicity derived from the ATLAS 9 fits to main sequence B stars is essentially the Fe abundance. We find that a near zero microturbulence velocity provides the best-fit to all but the hottest or most luminous stars (where it may become a surrogate for atmospheric expansion), and that the use of white dwarfs to calibrate UV spectrophotometry is valid.Comment: 17 pages, including 2 pages of Tables and 6 pages of Figures. Astrophysical Jounral, in pres

    Parenting in a warming world: thermoregulatory responses to heat stress in an endangered seabird

    Get PDF
    This is the final version. Available on open access from Oxford University Press via the DOI in this recordThe frequency of extreme weather events, including heat waves, is increasing with climate change. The thermoregulatory demands resulting from hotter weather can have catastrophic impacts on animals, leading to mass mortalities. Although less dramatic, animals also experience physiological costs below, but approaching, critical temperature thresholds. These costs may be particularly constraining during reproduction, when parents must balance thermoregulation against breeding activities. Such challenges should be acute among seabirds, which often nest in locations exposed to high solar radiation and predation risk. The globally endangered bank cormorant Phalacrocorax neglectus breeds in southern Africa in the winter, giving little scope for poleward or phenological shifts in the face of increasing temperatures. Physiological studies of endangered species sensitive to human disturbance, like the bank cormorant, are challenging, because individuals cannot be captured for experimental research. Using a novel, non-invasive, videographic approach, we investigated the thermoregulatory responses of this seabird across a range of environmental temperatures at three nesting colonies. The time birds spent gular fluttering, a behaviour enhancing evaporative heat loss, increased with temperature. Crouching or standing birds spent considerably less time gular fluttering than birds sitting on nests (ca 30% less at 22°C), showing that postural adjustments mediate exposure to heat stress and enhance water conservation. Crouching or standing, however, increases the vulnerability of eggs and chicks to suboptimal temperatures and/or expose nest contents to predation, suggesting that parents may trade-off thermoregulatory demands against offspring survival. We modelled thermoregulatory responses under future climate scenarios and found that nest-bound bank cormorants will gular flutter almost continuously for several hours a day by 2100. The associated increase in water loss may lead to dehydration, forcing birds to prioritize survival over breeding, a trade-off that would ultimately deteriorate the conservation status of this species.National Research FoundationDST-NRF Centre of Excellence fund at the FitzPatrick Institute of African OrnithologyLeiden Conservation Foundatio

    Constraining Disk Parameters of Be Stars using Narrowband H-alpha Interferometry with the NPOI

    Full text link
    Interferometric observations of two well-known Be stars, gamma Cas and phi Per, were collected and analyzed to determine the spatial characteristics of their circumstellar regions. The observations were obtained using the Navy Prototype Optical Interferometer equipped with custom-made narrowband filters. The filters isolate the H-alpha emission line from the nearby continuum radiation, which results in an increased contrast between the interferometric signature due to the H-alpha-emitting circumstellar region and the central star. Because the narrowband filters do not significantly attenuate the continuum radiation at wavelengths 50 nm or more away from the line, the interferometric signal in the H-alpha channel is calibrated with respect to the continuum channels. The observations used in this study represent the highest spatial resolution measurements of the H-alpha-emitting regions of Be stars obtained to date. These observations allow us to demonstrate for the first time that the intensity distribution in the circumstellar region of a Be star cannot be represented by uniform disk or ring-like structures, whereas a Gaussian intensity distribution appears to be fully consistent with our observations.Comment: 23 pages, 14 figures, accepted for publication in A

    Cygnus X-3 with ISO: investigating the wind

    Get PDF
    We observed the energetic binary Cygnus X-3 in both quiescent and flaring states between 4 and 16 microns using the ISO satellite. We find that the quiescent source shows the thermal free-free spectrum typical of a hot, fast stellar wind, such as from a massive helium star. The quiescent mass-loss rate due to a spherically symmetric, non-accelerating wind is found to be in the range 0.4-2.9 x 10E-4 solar masses per year, consistent with other infrared and radio observations, but considerably larger than the 10E-5 solar masses per year deduced from both the orbital change and the X-ray column density. There is rapid, large amplitude flaring at 4.5 and 11.5 microns at the same time as enhanced radio and X-ray activity, with the infrared spectrum apparently becoming flatter in the flaring state. We believe non-thermal processes are operating, perhaps along with enhanced thermal emission.Comment: Accepted for publication in MNRAS, 11 pages, 6 figure

    Ancient Migratory Events in the Middle East: New Clues from the Y-Chromosome Variation of Modern Iranians

    Get PDF
    Knowledge of high resolution Y-chromosome haplogroup diversification within Iran provides important geographic context regarding the spread and compartmentalization of male lineages in the Middle East and southwestern Asia. At present, the Iranian population is characterized by an extraordinary mix of different ethnic groups speaking a variety of Indo-Iranian, Semitic and Turkic languages. Despite these features, only few studies have investigated the multiethnic components of the Iranian gene pool. In this survey 938 Iranian male DNAs belonging to 15 ethnic groups from 14 Iranian provinces were analyzed for 84 Y-chromosome biallelic markers and 10 STRs. The results show an autochthonous but non-homogeneous ancient background mainly composed by J2a sub-clades with different external contributions. The phylogeography of the main haplogroups allowed identifying post-glacial and Neolithic expansions toward western Eurasia but also recent movements towards the Iranian region from western Eurasia (R1b-L23), Central Asia (Q-M25), Asia Minor (J2a-M92) and southern Mesopotamia (J1-Page08). In spite of the presence of important geographic barriers (Zagros and Alborz mountain ranges, and the Dasht-e Kavir and Dash-e Lut deserts) which may have limited gene flow, AMOVA analysis revealed that language, in addition to geography, has played an important role in shaping the nowadays Iranian gene pool. Overall, this study provides a portrait of the Y-chromosomal variation in Iran, useful for depicting a more comprehensive history of the peoples of this area as well as for reconstructing ancient migration routes. In addition, our results evidence the important role of the Iranian plateau as source and recipient of gene flow between culturally and genetically distinct population

    Properties of the H-alpha-emitting Circumstellar Regions of Be Stars

    Full text link
    Long-baseline interferometric observations obtained with the Navy Prototype Optical Interferometer of the H-alpha-emitting envelopes of the Be stars eta Tauri and beta Canis Minoris are presented. For compatibility with the previously published interferometric results in the literature of other Be stars, circularly symmetric and elliptical Gaussian models were fitted to the calibrated H-alpha observations. The models are sufficient in characterizing the angular distribution of the H-alpha-emitting circumstellar material associated with these Be stars. To study the correlations between the various model parameters and the stellar properties, the model parameters for eta Tau and beta CMi were combined with data for other Be stars from the literature. After accounting for the different distances to the sources and stellar continuum flux levels, it was possible to study the relationship between the net H-alpha emission and the physical extent of the H-alpha-emitting circumstellar region. A clear dependence of the net H-alpha emission on the linear size of the emitting region is demonstrated and these results are consistent with an optically thick line emission that is directly proportional to the effective area of the emitting disk. Within the small sample of stars considered in this analysis, no clear dependence on the spectral type or stellar rotation is found, although the results do suggest that hotter stars might have more extended H-alpha-emitting regions.Comment: 24 pages, 16 figures, accepted for publication in Ap

    Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'.

    Get PDF
    Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 (also known as CLEC7A) is a pattern-recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular antimicrobial activity, including phagocytosis and production of reactive oxygen species (ROS). In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern-recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that, despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 (also known as PTPRC and PTPRJ, respectively) are excluded (Supplementary Fig. 1). The 'phagocytic synapse' now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular antimicrobial responses only when they are required

    Stellar Rotation in Young Clusters. II. Evolution of Stellar Rotation and Surface Helium Abundance

    Get PDF
    We derive the effective temperatures and gravities of 461 OB stars in 19 young clusters by fitting the H-gamma profile in their spectra. We use synthetic model profiles for rotating stars to develop a method to estimate the polar gravity for these stars, which we argue is a useful indicator of their evolutionary status. We combine these results with projected rotational velocity measurements obtained in a previous paper on these same open clusters. We find that the more massive B-stars experience a spin down as predicted by the theories for the evolution of rotating stars. Furthermore, we find that the members of binary stars also experience a marked spin down with advanced evolutionary state due to tidal interactions. We also derive non-LTE-corrected helium abundances for most of the sample by fitting the He I 4026, 4387, 4471 lines. A large number of helium peculiar stars are found among cooler stars with Teff < 23000 K. The analysis of the high mass stars (8.5 solar masses < M < 16 solar masses) shows that the helium enrichment process progresses through the main sequence (MS) phase and is greater among the faster rotators. This discovery supports the theoretical claim that rotationally induced internal mixing is the main cause of surface chemical anomalies that appear during the MS phase. The lower mass stars appear to have slower rotation rates among the low gravity objects, and they have a large proportion of helium peculiar stars. We suggest that both properties are due to their youth. The low gravity stars are probably pre-main sequence objects that will spin up as they contract. These young objects very likely host a remnant magnetic field from their natal cloud, and these strong fields sculpt out surface regions with unusual chemical abundances.Comment: 50 pages 18 figures, accepted by Ap

    The chemical evolution of the solar neighbourhood

    Get PDF
    Recent models of galactic chemical evolution account for updated evolutionary models of massive stars (with special emphasis on stellar winds) and for the effects of intermediate mass and massive binaries. The results are summarised. We also present a critical discussion on possible effects of stellar rotation on overall galactic chemical evolutionary simulations.Comment: 12 pages, 3 figures, Pacific Rim Conference, Xi'an, China, 11-17 July 200
    corecore