11 research outputs found
Complexity Estimates for Two Uncoupling Algorithms
Uncoupling algorithms transform a linear differential system of first order
into one or several scalar differential equations. We examine two approaches to
uncoupling: the cyclic-vector method (CVM) and the
Danilevski-Barkatou-Z\"urcher algorithm (DBZ). We give tight size bounds on the
scalar equations produced by CVM, and design a fast variant of CVM whose
complexity is quasi-optimal with respect to the output size. We exhibit a
strong structural link between CVM and DBZ enabling to show that, in the
generic case, DBZ has polynomial complexity and that it produces a single
equation, strongly related to the output of CVM. We prove that algorithm CVM is
faster than DBZ by almost two orders of magnitude, and provide experimental
results that validate the theoretical complexity analyses.Comment: To appear in Proceedings of ISSAC'13 (21/01/2013