60 research outputs found
Measuring a coherent superposition
We propose a simple method for measuring the populations and the relative
phase in a coherent superposition of two atomic states. The method is based on
coupling the two states to a third common (excited) state by means of two laser
pulses, and measuring the total fluorescence from the third state for several
choices of the excitation pulses.Comment: 7 pages, 1 figure, twocolumn REVTe
Entanglement and criticality in translational invariant harmonic lattice systems with finite-range interactions
We discuss the relation between entanglement and criticality in
translationally invariant harmonic lattice systems with non-randon,
finite-range interactions. We show that the criticality of the system as well
as validity or break-down of the entanglement area law are solely determined by
the analytic properties of the spectral function of the oscillator system,
which can easily be computed. In particular for finite-range couplings we find
a one-to-one correspondence between an area-law scaling of the bi-partite
entanglement and a finite correlation length. This relation is strict in the
one-dimensional case and there is strog evidence for the multi-dimensional
case. We also discuss generalizations to couplings with infinite range.
Finally, to illustrate our results, a specific 1D example with nearest and
next-nearest neighbor coupling is analyzed.Comment: 4 pages, one figure, revised versio
Adiabatic creation of entangled states by a bichromatic field designed from the topology of the dressed eigenenergies
Preparation of entangled pairs of coupled two-state systems driven by a
bichromatic external field is studied. We use a system of two coupled spin-1/2
that can be translated into a three-state ladder model whose intermediate state
represents the entangled state. We show that this entangled state can be
prepared in a robust way with appropriate fields. Their frequencies and
envelopes are derived from the topological properties of the model.Comment: 10 pages, 9 figure
- …