71 research outputs found
Comprehensive genomic analysis of refractory multiple myeloma reveals a complex mutational landscape associated with drug resistance and novel therapeutic vulnerabilities
The outcomes of patients with multiple myeloma (MM) refractory to immunomodulatory agents (IMiDs) and proteasome inhibitors (PIs) remain poor. In this study, we performed whole genome and transcriptome sequencing of 39 heavily pretreated relapsed/refractory MM (RRMM) patients to identify mechanisms of resistance and potential therapeutic targets. We observed a high mutational load and indications of increased genomic instability. Recurrently mutated genes in RRMM, which had not been previously reported or only observed at a lower frequency in newly diagnosed MM, included NRAS, BRAF, TP53, SLC4A7, MLLT4, EWSR1, HCFC2, and COPS3. We found multiple genomic regions with bi-allelic events affecting tumor suppressor genes and demonstrated a significant adverse impact of bi-allelic TP53 alterations on survival. With regard to potentially resistance conferring mutations, recurrently mutated gene networks included genes with relevance for PI and IMiD activity; the latter particularly affecting members of the Cereblon and the COP9 signalosome complex. We observed a major impact of signatures associated with exposure to melphalan or impaired DNA double-strand break homologous recombination repair in RRMM. The latter coincided with mutations in genes associated with PARP inhibitor sensitivity in 49% of RRMM patients; a finding with potential therapeutic implications. In conclusion, this comprehensive genomic characterization revealed a complex mutational and structural landscape in RRMM and highlights potential implications for therapeutic strategies
Translocation t(6;7) in AML-M4 cell line GDM-1 results in MNX1 activation through enhancer-hijacking
T‐cell prolymphocytic leukemia is associated with deregulation of oncogenic microRNAs on transcriptional and epigenetic level
Deregulation of micro(mi)-RNAs is a common mechanism in tumorigenesis. We investigated the expression of 2083 miRNAs in T-cell prolymphocytic leukemia (T-PLL). Compared to physiologic CD4+ and CD8+ T-cell subsets, 111 miRNAs were differentially expressed in T-PLL. Of these, 33 belonged to miRNA gene clusters linked to cancer. Genomic variants affecting miRNAs were infrequent with the notable exception of copy number aberrations. Remarkably, we found strong upregulation of the miR-200c/-141 cluster in T-PLL to be associated with DNA hypomethylation and active promoter marks. Our findings suggest that copy number aberrations and epigenetic changes could contribute to miRNA deregulation in T-PLL
Focal structural variants revealed by whole genome sequencing disrupt the histone demethylase KDM4C in B cell lymphomas
Histone methylation-modifiers, like EZH2 and KMT2D, are recurrently altered in B-cell lymphomas. To comprehensively describe the landscape of alterations affecting genes encoding histone methylation-modifiers in lymphomagenesis we investigated whole genome and transcriptome data of 186 mature B-cell lymphomas sequenced in the ICGC MMML-Seq project. Besides confirming common alterations of KMT2D (47% of cases), EZH2 (17%), SETD1B (5%), PRDM9 (4%), KMT2C (4%), and SETD2 (4%) also identified by prior exome or RNAseq studies, we here unravel KDM4C in chromosome 9p24, encoding a histone demethylase, to be recurrently altered. Focal structural variation was the main mechanism of KDM4C alterations, which was independent from 9p24 amplification. We identified KDM4C alterations also in lymphoma cell lines including a focal homozygous deletion in a classical Hodgkin lymphoma cell line. By integrating RNAseq and genome sequencing data we predict KDM4C structural variants to result in loss-of-function. By functional reconstitution studies in cell lines, we provide evidence that KDM4C can act as tumor suppressor. Thus, we show that identification of structural variants in whole genome sequencing data adds to the comprehensive description of the mutational landscape of lymphomas and, moreover, establish KDM4C as putative tumor suppressive gene recurrently altered in subsets of B-cell derived lymphomas
The genomic and transcriptional landscape of primary central nervous system lymphoma
Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations
Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma
Burkitt lymphoma (BL) is the most common B-cell lymphoma in children. Within the International Cancer Genome Consortium (ICGC), we performed whole genome and transcriptome sequencing of 39 sporadic BL. Here, we unravel interaction of structural, mutational, and transcriptional changes, which contribute to MYC oncogene dysregulation together with the pathognomonic IG-MYC translocation. Moreover, by mapping IGH translocation breakpoints, we provide evidence that the precursor of at least a subset of BL is a B-cell poised to express IGHA. We describe the landscape of mutations, structural variants, and mutational processes, and identified a series of driver genes in the pathogenesis of BL, which can be targeted by various mechanisms, including IG-non MYC translocations, germline and somatic mutations, fusion transcripts, and alternative splicing
Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma
Burkitt lymphoma (BL) is the most common B-cell lymphoma in children. Within the International Cancer Genome Consortium (ICGC), we performed whole genome and transcriptome sequencing of 39 sporadic BL. Here, we unravel interaction of structural, mutational, and transcriptional changes, which contribute to MYC oncogene dysregulation together with the pathognomonic IG-MYC translocation. Moreover, by mapping IGH translocation breakpoints, we provide evidence that the precursor of at least a subset of BL is a B-cell poised to express IGHA. We describe the landscape of mutations, structural variants, and mutational processes, and identified a series of driver genes in the pathogenesis of BL, which can be targeted by various mechanisms, including IG-non MYC translocations, germline and somatic mutations, fusion transcripts, and alternative splicing
- …